論文の概要: MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective
- arxiv url: http://arxiv.org/abs/2405.14981v1
- Date: Thu, 23 May 2024 18:35:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 19:27:21.996406
- Title: MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective
- Title(参考訳): MASS:情報理論から見た多属性選択型データ変換の抑制
- Authors: Yizhuo Chen, Chun-Fu Chen, Hsiang Hsu, Shaohan Hu, Marco Pistoia, Tarek Abdelzaher,
- Abstract要約: 本稿では,このユーティリティ保護プライバシ保護問題に対する情報理論の形式的定義を提案する。
我々は、ターゲットデータセットからセンシティブな属性を抑えることができるデータ駆動学習可能なデータ変換フレームワークを設計する。
- 参考スコア(独自算出の注目度): 10.009178591853058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing richness of large-scale datasets has been crucial in driving the rapid advancement and wide adoption of machine learning technologies. The massive collection and usage of data, however, pose an increasing risk for people's private and sensitive information due to either inadvertent mishandling or malicious exploitation. Besides legislative solutions, many technical approaches have been proposed towards data privacy protection. However, they bear various limitations such as leading to degraded data availability and utility, or relying on heuristics and lacking solid theoretical bases. To overcome these limitations, we propose a formal information-theoretic definition for this utility-preserving privacy protection problem, and design a data-driven learnable data transformation framework that is capable of selectively suppressing sensitive attributes from target datasets while preserving the other useful attributes, regardless of whether or not they are known in advance or explicitly annotated for preservation. We provide rigorous theoretical analyses on the operational bounds for our framework, and carry out comprehensive experimental evaluations using datasets of a variety of modalities, including facial images, voice audio clips, and human activity motion sensor signals. Results demonstrate the effectiveness and generalizability of our method under various configurations on a multitude of tasks.
- Abstract(参考訳): 大規模データセットの肥大化は、機械学習技術の急速な進歩と広範な採用を促進する上で極めて重要である。
しかし、大量のデータの収集と利用は、不注意な不正処理や悪意ある搾取のために、人々の個人的かつ機密性の高い情報に対するリスクが増大する。
立法ソリューション以外にも、データプライバシ保護に対する多くの技術的アプローチが提案されている。
しかし、データの可用性とユーティリティの低下、ヒューリスティックに依存し、しっかりとした理論的基盤を欠いているなど、さまざまな制限がある。
これらの制約を克服するために,このユーティリティ保護プライバシ保護問題に対する公式な情報理論的定義を提案し,データ駆動型学習可能なデータ変換フレームワークを設計する。
我々は,我々のフレームワークの運用範囲に関する厳密な理論的分析を行い,顔画像,音声クリップ,人間の活動運動センサ信号など,様々なモダリティのデータセットを用いて総合的な実験的評価を行う。
提案手法の有効性と一般化性について,様々な構成のタスクで検証した。
関連論文リスト
- Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
本稿では,高次元画像データに適したノイズ注入技術,ロバストな特徴抽出のための変分オートエンコーダ(VAE),構造化データプライバシに最適化された期待最大化(EM)アプローチの3つの高度なアルゴリズムを紹介する。
本手法は,機密属性と変換データ間の相互情報を著しく低減し,プライバシーを向上する。
この研究は、さまざまなデータタイプにまたがってプライバシ保護アルゴリズムをデプロイするための柔軟で効果的な戦略を提供することによって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-04-24T22:58:42Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Large Language Models Can Be Good Privacy Protection Learners [53.07930843882592]
本稿では,プライバシ保護言語モデル(PPLM)を紹介する。
本研究は, コーパスキュレーション, ペナルティに基づくトレーニング損失の相違, 命令に基づくチューニングなど, モデル設計の理論的解析を行う。
特に、肯定的な例と否定的な例の両方による命令チューニングは、モデルの知識を高めながら、個人データを効果的に保護する、有望な方法として際立っている。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - MaSS: Multi-attribute Selective Suppression [8.337285030303285]
本稿では,多属性選択抑制(Multi-Atribute Selective Suppression,MASS)を提案する。
MASSは2組のネットワーク間の対戦ゲームを通じてデータ修飾子を学習する。
本研究では,異なる領域の複数のデータセットを用いて提案手法の広範な評価を行った。
論文 参考訳(メタデータ) (2022-10-18T14:44:08Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
分類タスクにおけるデータプライバシと予測性能のトレードオフの存在を評価する。
従来の文献とは異なり、プライバシーのレベルが高ければ高いほど、予測性能が向上することを確認した。
論文 参考訳(メタデータ) (2022-01-13T21:48:51Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Privacy Enhancing Machine Learning via Removal of Unwanted Dependencies [21.97951347784442]
本稿では,特定のアプリケーションに送信される前に,データ中のセンシティブな情報を除去する,教師付き・敵対型学習手法の新たな変種について検討する。
提案手法は,エンド・ツー・エンド方式で特徴マッピングと予測モデルを同時に保存するプライバシー保護を最適化する。
モバイルセンシングと顔データを用いた実験結果から,予測モデルの実用性能の維持に成功し,予測性能の低下を招いた。
論文 参考訳(メタデータ) (2020-07-30T19:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。