Benchmarking Hierarchical Image Pyramid Transformer for the classification of colon biopsies and polyps in histopathology images
- URL: http://arxiv.org/abs/2405.15127v1
- Date: Fri, 24 May 2024 00:59:30 GMT
- Title: Benchmarking Hierarchical Image Pyramid Transformer for the classification of colon biopsies and polyps in histopathology images
- Authors: Nohemi Sofia Leon Contreras, Marina D'Amato, Francesco Ciompi, Clement Grisi, Witali Aswolinskiy, Simona Vatrano, Filippo Fraggetta, Iris Nagtegaal,
- Abstract summary: Recent advances in self-supervised learning have shown that highly descriptive image representations can be learned without the need for annotations.
We investigate the application of the recent Hierarchical Image Pyramid Transformer (HIPT) model for the specific task of classification of colorectal biopsies and polyps.
- Score: 1.0007063839516088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training neural networks with high-quality pixel-level annotation in histopathology whole-slide images (WSI) is an expensive process due to gigapixel resolution of WSIs. However, recent advances in self-supervised learning have shown that highly descriptive image representations can be learned without the need for annotations. We investigate the application of the recent Hierarchical Image Pyramid Transformer (HIPT) model for the specific task of classification of colorectal biopsies and polyps. After evaluating the effectiveness of TCGA-learned features in the original HIPT model, we incorporate colon biopsy image information into HIPT's pretraining using two distinct strategies: (1) fine-tuning HIPT from the existing TCGA weights and (2) pretraining HIPT from random weight initialization. We compare the performance of these pretraining regimes on two colorectal biopsy classification tasks: binary and multiclass classification.
Related papers
- A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - Gene-induced Multimodal Pre-training for Image-omic Classification [20.465959546613554]
This paper proposes a Gene-induced Multimodal Pre-training framework, which jointly incorporates genomics and Whole Slide Images (WSIs) for classification tasks.
Experimental results on the TCGA dataset show the superiority of our network architectures and our pre-training framework, achieving 99.47% in accuracy for image-omic classification.
arXiv Detail & Related papers (2023-09-06T04:30:15Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - PDBL: Improving Histopathological Tissue Classification with
Plug-and-Play Pyramidal Deep-Broad Learning [20.940530194934972]
Pyramidal Deep-Broad Learning (PDBL) is a lightweight plug-and-play module for any well-trained classification backbone.
PDBL can steadily improve the tissue-level classification performance for any CNN backbones.
arXiv Detail & Related papers (2021-11-04T09:35:12Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images.
Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images.
We propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification.
arXiv Detail & Related papers (2021-08-05T09:31:46Z) - Instance-based Vision Transformer for Subtyping of Papillary Renal Cell
Carcinoma in Histopathological Image [31.00452985964065]
Histological subtype of papillary (p) renal cell carcinoma (RCC), type 1 vs. type 2, is an essential prognostic factor.
This paper proposes a novel instance-based Vision Transformer (i-ViT) to learn robust representations of histological images for the pRCC subtyping task.
Experimental results show that the proposed method achieves better performance than existing CNN-based models with a significant margin.
arXiv Detail & Related papers (2021-06-23T09:42:49Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.