論文の概要: Towards Understanding How Transformer Perform Multi-step Reasoning with Matching Operation
- arxiv url: http://arxiv.org/abs/2405.15302v1
- Date: Fri, 24 May 2024 07:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:40:48.367752
- Title: Towards Understanding How Transformer Perform Multi-step Reasoning with Matching Operation
- Title(参考訳): 整合操作によるマルチステップ推論におけるトランスフォーマーの動作の理解に向けて
- Authors: Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng Sun, Zhenguo Li, Yaoyu Zhang, Zhi-Qin John Xu,
- Abstract要約: 大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
構築したデータセットの多段階推論においてTransformerが使用するマッチング機構について検討する。
本稿では,この現象に基づくモデル推論能力の上限に関する予想を提案する。
- 参考スコア(独自算出の注目度): 52.77133661679439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capabilities. In this study, we examine the matching mechanism employed by Transformer for multi-step reasoning on a constructed dataset. We investigate factors that influence the model's matching mechanism and discover that small initialization and post-LayerNorm can facilitate the formation of the matching mechanism, thereby enhancing the model's reasoning ability. Moreover, we propose a method to improve the model's reasoning capability by adding orthogonal noise. Finally, we investigate the parallel reasoning mechanism of Transformers and propose a conjecture on the upper bound of the model's reasoning ability based on this phenomenon. These insights contribute to a deeper understanding of the reasoning processes in large language models and guide designing more effective reasoning architectures and training strategies.
- Abstract(参考訳): 大規模言語モデルは、数学的問題解決のような複雑な推論タスクに一貫して苦労してきた。
これらのモデルの内部推論メカニズムを調査することで、よりよいモデルアーキテクチャとトレーニング戦略を設計し、最終的には推論能力を向上できます。
本研究では,Transformerが構築したデータセットの多段階推論に使用するマッチング機構について検討する。
我々は,モデルのマッチング機構に影響を与える要因を調査し,小さな初期化とポストレイアノームによりマッチング機構の形成が促進され,モデルの推論能力が向上することを示す。
さらに,直交雑音を付加することでモデルの推論能力を向上させる手法を提案する。
最後に、トランスフォーマーの並列推論機構について検討し、この現象に基づくモデルの推論能力の上限に関する予想を提案する。
これらの洞察は、大きな言語モデルにおける推論プロセスのより深い理解に寄与し、より効果的な推論アーキテクチャとトレーニング戦略の設計をガイドします。
関連論文リスト
- Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
ホック後説明可能性法は、ますます複雑なNLPモデルを理解するための重要なツールである。
本稿では,人間の判断を説明するテキストアノテーションをテキスト分類モデルに組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T22:39:33Z) - Solving the Clustering Reasoning Problems by Modeling a Deep-Learning-Based Probabilistic Model [1.7955614278088239]
我々は,Bongard-Logoで高い推論精度を実現する深層学習に基づく確率モデルであるPMoCを紹介する。
また,複雑な視覚的抽象的推論タスクのためのPose-Transformerを設計した。
論文 参考訳(メタデータ) (2024-03-05T18:08:29Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
合成推論タスクで訓練された変圧器の包括的力学解析について述べる。
モデルがタスクの解決に使用する解釈可能なメカニズムのセットを特定し,相関的および因果的証拠を用いた結果の検証を行った。
論文 参考訳(メタデータ) (2024-02-19T08:04:25Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
NLP研究の重要な側面である推論は、一般的なモデルによって適切に対処されていない。
我々は、各発話がどのように情報チャネルを受信し、活性化するかを説明する会話認知モデル(CCM)を開発した。
変分推論を利用することで、暗黙的な原因の代用を探索し、その観測不可能性の問題に対処し、証拠の低い境界を通して発話の因果表現を再構築する。
論文 参考訳(メタデータ) (2023-05-28T13:54:09Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Disentangling Reasoning Capabilities from Language Models with
Compositional Reasoning Transformers [72.04044221898059]
ReasonFormerは、人間のモジュール的および構成的推論プロセスを反映するための統一的な推論フレームワークである。
表現モジュール(自動思考)と推論モジュール(制御思考)は、異なるレベルの認知を捉えるために切り離される。
統一された推論フレームワークは、単一のモデルで複数のタスクを解決し、エンドツーエンドでトレーニングされ、推論される。
論文 参考訳(メタデータ) (2022-10-20T13:39:55Z) - Learning to Reason With Relational Abstractions [65.89553417442049]
関係抽象化の考え方を用いて,言語モデルにおいてより強力な推論能力を構築する方法について検討する。
このようなシーケンスをプロンプトとして提供したモデルでは,タスクの精度が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2022-10-06T00:27:50Z) - Towards Interpretable Reasoning over Paragraph Effects in Situation [126.65672196760345]
我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
論文 参考訳(メタデータ) (2020-10-03T04:03:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。