論文の概要: Are Long-LLMs A Necessity For Long-Context Tasks?
- arxiv url: http://arxiv.org/abs/2405.15318v1
- Date: Fri, 24 May 2024 07:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:31:04.195725
- Title: Are Long-LLMs A Necessity For Long-Context Tasks?
- Title(参考訳): Long-LLMはLong-Context Tasksの必要性か?
- Authors: Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Yujia Zhou, Xu Chen, Zhicheng Dou,
- Abstract要約: 我々は,Long-LLMは長文タスクの解決に必要ではない,と論じる。
本稿では,長文タスクをブートストラップ方式で処理可能なLC-Boostというフレームワークを提案する。
LC-Boostは、提示されたタスクに基づいてコンテキストを適応的にアクセスして利用することにより、多種多様長文処理問題に対処するための一般的なフレームワークとして機能する。
- 参考スコア(独自算出の注目度): 28.54986983107062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The learning and deployment of long-LLMs remains a challenging problem despite recent progresses. In this work, we argue that the long-LLMs are not a necessity to solve long-context tasks, as common long-context tasks are short-context solvable, i.e. they can be solved by purely working with oracle short-contexts within the long-context tasks' inputs. On top of this argument, we propose a framework called LC-Boost (Long-Context Bootstrapper), which enables a short-LLM to address the long-context tasks in a bootstrapping manner. In our framework, the short-LLM prompts itself to reason for two critical decisions: 1) how to access to the appropriate part of context within the input, 2) how to make effective use of the accessed context. By adaptively accessing and utilizing the context based on the presented tasks, LC-Boost can serve as a general framework to handle diversified long-context processing problems. We comprehensively evaluate different types of tasks from popular long-context benchmarks, where LC-Boost is able to achieve a substantially improved performance with a much smaller consumption of resource.
- Abstract(参考訳): 長いLLMの学習とデプロイは、最近の進歩にもかかわらず難しい問題である。
本研究では,Long-LLMが長文タスクの解決に必須ではないこと,また,長文タスクの入力内でオラクルの短文を純粋に処理することで,長文タスクの解決が可能であることを論じる。
その上で,LC-Boost(Long-Context Bootstrapper)というフレームワークを提案する。
私たちのフレームワークでは、短いLLMが2つの決定を下すように促しています。
1)入力内のコンテキストの適切な部分にどのようにアクセスするか。
2)アクセスしたコンテキストを効果的に活用する方法。
LC-Boostは、提示されたタスクに基づいてコンテキストを適応的にアクセスして利用することにより、多種多様長文処理問題に対処するための一般的なフレームワークとして機能する。
LC-Boostは,リソース消費をはるかに小さくすることで,大幅な性能向上を実現している。
関連論文リスト
- Hyper-multi-step: The Truth Behind Difficult Long-context Tasks [21.725514727966026]
Long-context Language Model (LCLM) はますます人気が高まっている。
長いコンテキストのベンチマークでは、最も先進的なLCLMでさえ完成に苦しむ課題が提示される。
本研究は, 主に2つの基本課題から生じる難易度を示す実験を行った。
論文 参考訳(メタデータ) (2024-10-06T09:29:19Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
広義のテキスト理解とテキスト内学習は、完全な文書コンテキストを利用する言語モデルを必要とする。
長期コンテキストモデルを直接訓練する際の実装上の課題のため、長期コンテキストを扱うためにモデルを拡張する多くの方法が提案されている。
我々は,一貫したベースモデルと拡張データを利用して,標準化された評価による拡張メソッドの制御プロトコルを実装した。
論文 参考訳(メタデータ) (2024-09-18T17:53:17Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [89.51834016940153]
本稿では,100K以上の平均コンテキスト長を持つナラティブ推論ベンチマークであるTectiveQAを紹介する。
探偵小説をデータソースとして使用し、様々な理由付け要素を自然に持っている。
私たちは中国語で600の質問を手動で注釈付けし、文脈情報と質問の英語版も提供しました。
論文 参考訳(メタデータ) (2024-09-04T06:28:22Z) - Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack [33.178008350124315]
長文言語モデル(LM)に挑戦し、テキスト内学習(ICL)を通して言語タスクのシーケンスから学習する問題設定であるLifelong ICLを導入する。
長文LMがLifelong ICLのコンテキストをどのように利用するかを評価し診断するための評価スイートであるTask Haystackを紹介する。
論文 参考訳(メタデータ) (2024-07-23T17:57:41Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window? [37.64593022203498]
NeedleBenchは、バイリンガルの長期コンテキスト能力を評価するための、徐々に難しいタスクからなるフレームワークである。
私たちはこのフレームワークを使って、主要なオープンソースモデルがその疑問に関連する重要な情報をどの程度正確に特定できるかを評価する。
本稿では,実世界の長文タスクに現れる可能性の高い論理的推論課題の複雑さを模倣するAncestral Trace Challengeを提案する。
論文 参考訳(メタデータ) (2024-07-16T17:59:06Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Chain of Agents: Large Language Models Collaborating on Long-Context Tasks [39.27648679819897]
CoA(Chain-of-Agents)は、自然言語によるマルチエージェントコラボレーションを利用して、情報集約とコンテキスト推論を可能にする新しいフレームワークである。
CoAは読み出しと推論をインターリーブすることで入力全体を処理し、各エージェントに短いコンテキストを割り当てることで、長いコンテキストのフォーカス問題を軽減します。
論文 参考訳(メタデータ) (2024-06-04T23:36:08Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
本稿では,ステップスキッピングアライメント(SkipAlign)を紹介する。
これは、Large Language Models(LLMs)の長期コンテキスト機能を強化するために設計された新しい技術である。
ベースモデルとアライメントデータセットを慎重に選択することで、SkipAlignは6Bパラメータだけで最高のパフォーマンスを実現し、LongBenchのGPT-3.5-Turbo-16Kのような強力なベースラインに匹敵する。
論文 参考訳(メタデータ) (2024-05-07T01:56:22Z) - LooGLE: Can Long-Context Language Models Understand Long Contexts? [46.143956498529796]
LooGLEは、大規模言語モデルの長いコンテキスト理解のためのベンチマークである。
2022年以降に比較的新しい文書が登場し、1ドキュメントあたり24,000以上のトークンと、さまざまな領域にまたがる6,000の新たな質問が提供されている。
LooGLEにおける8つの最先端LCMの評価から,重要な所見が得られた。
論文 参考訳(メタデータ) (2023-11-08T01:45:37Z) - LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding [58.20031627237889]
LongBenchは、コンテキスト理解のための最初のバイリンガルでマルチタスクのベンチマークである。
英語と中国語の6つのタスクカテゴリにまたがる21のデータセットで構成され、平均的な長さは6,711語(英語)と13,386文字(中国語)である。
論文 参考訳(メタデータ) (2023-08-28T11:53:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。