Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving
- URL: http://arxiv.org/abs/2405.15324v2
- Date: Fri, 25 Oct 2024 16:00:54 GMT
- Title: Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving
- Authors: Jianbiao Mei, Yukai Ma, Xuemeng Yang, Licheng Wen, Xinyu Cai, Xin Li, Daocheng Fu, Bo Zhang, Pinlong Cai, Min Dou, Botian Shi, Liang He, Yong Liu, Yu Qiao,
- Abstract summary: We introduce LeapAD, a novel paradigm for autonomous driving inspired by the human cognitive process.
Specifically, LeapAD emulates human attention by selecting critical objects relevant to driving decisions.
System consists of an Analytic Process (System-II) for thorough analysis and reasoning, along with a Heuristic Process (System-I) for swift and empirical processing.
- Score: 33.465785037065594
- License:
- Abstract: Autonomous driving has advanced significantly due to sensors, machine learning, and artificial intelligence improvements. However, prevailing methods struggle with intricate scenarios and causal relationships, hindering adaptability and interpretability in varied environments. To address the above problems, we introduce LeapAD, a novel paradigm for autonomous driving inspired by the human cognitive process. Specifically, LeapAD emulates human attention by selecting critical objects relevant to driving decisions, simplifying environmental interpretation, and mitigating decision-making complexities. Additionally, LeapAD incorporates an innovative dual-process decision-making module, which consists of an Analytic Process (System-II) for thorough analysis and reasoning, along with a Heuristic Process (System-I) for swift and empirical processing. The Analytic Process leverages its logical reasoning to accumulate linguistic driving experience, which is then transferred to the Heuristic Process by supervised fine-tuning. Through reflection mechanisms and a growing memory bank, LeapAD continuously improves itself from past mistakes in a closed-loop environment. Closed-loop testing in CARLA shows that LeapAD outperforms all methods relying solely on camera input, requiring 1-2 orders of magnitude less labeled data. Experiments also demonstrate that as the memory bank expands, the Heuristic Process with only 1.8B parameters can inherit the knowledge from a GPT-4 powered Analytic Process and achieve continuous performance improvement. Project page: https://pjlab-adg.github.io/LeapAD.
Related papers
- LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking [13.898774643126174]
LeapVAD implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions.
System consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning.
arXiv Detail & Related papers (2025-01-14T14:49:45Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Emulating Brain-like Rapid Learning in Neuromorphic Edge Computing [3.735012564657653]
Digital neuromorphic technology simulates the neural and synaptic processes of the brain using two stages of learning.
We demonstrate our approach using event-driven vision sensor data and the Intel Loihi neuromorphic processor with its plasticity dynamics.
Our methodology can be deployed with arbitrary plasticity models and can be applied to situations demanding quick learning and adaptation at the edge.
arXiv Detail & Related papers (2024-08-28T13:51:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Visual Agents as Fast and Slow Thinkers [88.1404921693082]
We introduce FaST, which incorporates the Fast and Slow Thinking mechanism into visual agents.
FaST employs a switch adapter to dynamically select between System 1/2 modes.
It tackles uncertain and unseen objects by adjusting model confidence and integrating new contextual data.
arXiv Detail & Related papers (2024-08-16T17:44:02Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
arXiv Detail & Related papers (2024-03-27T08:34:39Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Pushing the Limits of Learning-based Traversability Analysis for
Autonomous Driving on CPU [1.841057463340778]
This paper proposes and evaluates a real-time machine learning-based Traversability Analysis method.
We show that integrating a new set of geometric and visual features and focusing on important implementation details enables a noticeable boost in performance and reliability.
The proposed approach has been compared with state-of-the-art Deep Learning approaches on a public dataset of outdoor driving scenarios.
arXiv Detail & Related papers (2022-06-07T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.