Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints
- URL: http://arxiv.org/abs/2405.15328v2
- Date: Tue, 17 Dec 2024 05:35:15 GMT
- Title: Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints
- Authors: Yash Sinha, Murari Mandal, Mohan Kankanhalli,
- Abstract summary: This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data.<n> MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods.<n>It is up to $mathbf1.3times$ faster than the Gold model, which is trained on retain set from scratch.
- Score: 10.335361310419826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to $\mathbf{1.3}\times$ faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. The code will be released after review.
Related papers
- Can Large Language Models Understand Preferences in Personalized Recommendation? [32.2250928311146]
We introduce PerRecBench, disassociating evaluation from user rating bias and item quality.
We find that the LLM-based recommendation techniques that are generally good at rating prediction fail to identify users' favored and disfavored items when the user rating bias and item quality are eliminated.
Our findings reveal the superiority of pairwise and listwise ranking approaches over pointwise ranking, PerRecBench's low correlation with traditional regression metrics, the importance of user profiles, and the role of pretraining data distributions.
arXiv Detail & Related papers (2025-01-23T05:24:18Z) - Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - An Enhanced-State Reinforcement Learning Algorithm for Multi-Task Fusion in Large-Scale Recommender Systems [12.277443583840963]
We propose a novel method called Enhanced-State RL for Multi-Task Fusion (MTF) in Recommender Systems (RSs)
Our method first defines user features, item features, and other valuable features collectively as the enhanced state; then proposes a novel actor and critic learning process to utilize the enhanced state to make much better action for each user-item pair.
arXiv Detail & Related papers (2024-09-18T03:34:31Z) - DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
Sequential Recommendation (SR) plays a pivotal role in recommender systems by tailoring recommendations to user preferences based on their non-stationary historical interactions.
We propose a novel framework called DimeRec that combines a guidance extraction module (GEM) and a generative diffusion aggregation module (DAM)
Our numerical experiments demonstrate that DimeRec significantly outperforms established baseline methods across three publicly available datasets.
arXiv Detail & Related papers (2024-08-22T06:42:09Z) - Customizing Language Models with Instance-wise LoRA for Sequential Recommendation [28.667247613039965]
Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences.
We propose Instance-wise LoRA (iLoRA) as a form of multi-task learning, integrating LoRA with the Mixture of Experts (MoE) framework.
iLoRA achieves an average relative improvement of 11.4% over basic LoRA in the hit ratio metric, with less than a 1% relative increase in trainable parameters.
arXiv Detail & Related papers (2024-08-19T17:09:32Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
Reinforcement learning with human feedback (RLHF) is a widely adopted approach in current large language model pipelines.
Our approach introduces two key innovations: (1) on-policy query to avoid OOD and imbalance issues in seed data, and (2) active learning to select the most informative data for preference queries.
arXiv Detail & Related papers (2024-07-02T10:09:19Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
Long user queries from millions of users can degrade the performance of large language models for recommendation.
We propose a hybrid task allocation framework that utilizes the capabilities of both large language models and traditional recommendation systems.
Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations.
arXiv Detail & Related papers (2024-05-01T19:11:47Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Multimodal Recommender Systems: A Survey [50.23505070348051]
Multimodal Recommender System (MRS) has attracted much attention from both academia and industry recently.
In this paper, we will give a comprehensive survey of the MRS models, mainly from technical views.
To access more details of the surveyed papers, such as implementation code, we open source a repository.
arXiv Detail & Related papers (2023-02-08T05:12:54Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
We introduce a method involving multi-goal sampling followed by ranking for user-relevance (Sample-Rank) to nudge recommendations towards multi-objective goals of the marketplace.
The proposed method's novelty is that it reduces the MO recommendation problem to sampling from a desired multi-goal distribution then using it to build a production-friendly learning-to-rank model.
arXiv Detail & Related papers (2020-08-24T09:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.