Improved Ground State Estimation in Quantum Field Theories via Normalising Flow-Assisted Neural Quantum States
- URL: http://arxiv.org/abs/2506.12128v1
- Date: Fri, 13 Jun 2025 18:00:01 GMT
- Title: Improved Ground State Estimation in Quantum Field Theories via Normalising Flow-Assisted Neural Quantum States
- Authors: Vishal S. Ngairangbam, Michael Spannowsky, Timur Sypchenko,
- Abstract summary: We propose a hybrid variational framework that enhances Neural Quantum States (NQS) with a Normalising Flow-based sampler.<n>Our approach decouples the sampling task from the variational ansatz by learning a continuous flow model that targets a discretised, amplitude-supported subspace of the Hilbert space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid variational framework that enhances Neural Quantum States (NQS) with a Normalising Flow-based sampler to improve the expressivity and trainability of quantum many-body wavefunctions. Our approach decouples the sampling task from the variational ansatz by learning a continuous flow model that targets a discretised, amplitude-supported subspace of the Hilbert space. This overcomes limitations of Markov Chain Monte Carlo (MCMC) and autoregressive methods, especially in regimes with long-range correlations and volume-law entanglement. Applied to the transverse-field Ising model with both short- and long-range interactions, our method achieves comparable ground state energy errors with state-of-the-art matrix product states and lower energies than autoregressive NQS. For systems up to 50 spins, we demonstrate high accuracy and robust convergence across a wide range of coupling strengths, including regimes where competing methods fail. Our results showcase the utility of flow-assisted sampling as a scalable tool for quantum simulation and offer a new approach toward learning expressive quantum states in high-dimensional Hilbert spaces.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Quantum-Classical Boundary Engineering in Weak-to-Strong Measurements via Squeezed Vacua [0.19662978733004596]
This study establishes a post-selected von Neumann framework to regulate non-classical features of single-photon-subtracted squeezed vacuum states.<n>Phase-space analysis via the Husimi Kano Q function reveals a critical transition: as coupling strength increases, SPSSV and TMSV states evolve from quantum non-Gaussianity to classical single-peak separability.
arXiv Detail & Related papers (2025-07-29T07:22:36Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Entanglement Structure of Non-Gaussian States and How to Measure It [0.0]
We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
arXiv Detail & Related papers (2024-07-16T18:00:01Z) - Multi-qubit quantum state preparation enabled by topology optimization [0.0]
We inverse-design nanophotonic cavities enabling the preparation of pure states of pairs and triples of quantum emitters.
Our findings open the way towards the efficient and fast preparation of multiqubit quantum states with engineered features.
arXiv Detail & Related papers (2024-05-24T08:52:22Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Quantum Simulation of Open Quantum Dynamics via Non-Markovian Quantum State Diffusion [2.9413085575648235]
Quantum simulation of non-Markovian open quantum dynamics is essential but challenging for standard quantum computers.
We introduce a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in system with non-Markovian environment.
arXiv Detail & Related papers (2024-04-16T15:31:25Z) - Contextual Subspace Variational Quantum Eigensolver Calculation of the Dissociation Curve of Molecular Nitrogen on a Superconducting Quantum Computer [0.06990493129893112]
We present an experimental demonstration of the Contextual Subspace Variational Quantum Eigensolver on superconducting quantum hardware.
In particular, we compute the potential energy curve for molecular nitrogen, where a dominance of static correlation in the dissociation limit proves challenging for many conventional quantum chemistry techniques.
Our quantum simulations retain good agreement with the full configuration interaction energy in the chosen STO-3G basis, outperforming all benchmarked single-reference wavefunction techniques in capturing the bond-breaking appropriately.
arXiv Detail & Related papers (2023-12-07T16:05:52Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.