論文の概要: Unlearning during Learning: An Efficient Federated Machine Unlearning Method
- arxiv url: http://arxiv.org/abs/2405.15474v1
- Date: Fri, 24 May 2024 11:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:32:33.224957
- Title: Unlearning during Learning: An Efficient Federated Machine Unlearning Method
- Title(参考訳): 学習中の学習: 効果的なフェデレートされた機械学習手法
- Authors: Hanlin Gu, Gongxi Zhu, Jie Zhang, Xinyuan Zhao, Yuxing Han, Lixin Fan, Qiang Yang,
- Abstract要約: フェデレートラーニング(FL)は分散機械学習パラダイムとして注目されている。
忘れられる権利の実装を容易にするために、フェデレーション・マシン・アンラーニング(FMU)の概念も現れた。
我々はこれらの制限を克服することを目的とした革新的で効率的なFMUフレームワークであるFedAUを紹介する。
- 参考スコア(独自算出の注目度): 20.82138206063572
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, Federated Learning (FL) has garnered significant attention as a distributed machine learning paradigm. To facilitate the implementation of the right to be forgotten, the concept of federated machine unlearning (FMU) has also emerged. However, current FMU approaches often involve additional time-consuming steps and may not offer comprehensive unlearning capabilities, which renders them less practical in real FL scenarios. In this paper, we introduce FedAU, an innovative and efficient FMU framework aimed at overcoming these limitations. Specifically, FedAU incorporates a lightweight auxiliary unlearning module into the learning process and employs a straightforward linear operation to facilitate unlearning. This approach eliminates the requirement for extra time-consuming steps, rendering it well-suited for FL. Furthermore, FedAU exhibits remarkable versatility. It not only enables multiple clients to carry out unlearning tasks concurrently but also supports unlearning at various levels of granularity, including individual data samples, specific classes, and even at the client level. We conducted extensive experiments on MNIST, CIFAR10, and CIFAR100 datasets to evaluate the performance of FedAU. The results demonstrate that FedAU effectively achieves the desired unlearning effect while maintaining model accuracy.
- Abstract(参考訳): 近年、フェデレートラーニング(FL)は分散機械学習パラダイムとして注目されている。
忘れられる権利の実装を容易にするために、フェデレーション・マシン・アンラーニング(FMU)の概念も現れた。
しかし、現在のFMUアプローチは、しばしば追加の時間を要するステップを伴い、包括的なアンラーニング機能を提供しない可能性があるため、実際のFLシナリオでは実用的でない。
本稿では,これらの制約を克服することを目的とした,革新的で効率的なFMUフレームワークであるFedAUを紹介する。
具体的には、FedAUは、学習プロセスに軽量な補助的な未学習モジュールを組み込み、非学習を容易にするために直線的な操作を採用する。
このアプローチは、追加の時間を要するステップを排除し、FLに適しています。
さらに、フェダウは優れた万能性を示す。
複数のクライアントが同時にアンラーニングタスクを実行できるだけでなく、個々のデータサンプルや特定のクラス、さらにはクライアントレベルでも、さまざまなレベルでアンラーニングをサポートする。
We performed extensive experiment on MNIST, CIFAR10, CIFAR100 datasets to evaluate the performance of FedAU。
その結果,FedAUはモデル精度を維持しつつ,求める未学習効果を効果的に達成できることが示唆された。
関連論文リスト
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
カリキュラム学習は非IID性を大幅に軽減する。
クライアント間でデータ配布を多様化すればするほど、学習の恩恵を受けるようになる。
本稿では,クライアントの現実的格差を生かした新しいクライアント選択手法を提案する。
論文 参考訳(メタデータ) (2022-12-24T11:02:35Z) - SIFU: Sequential Informed Federated Unlearning for Efficient and Provable Client Unlearning in Federated Optimization [23.064896326146386]
Machine Unlearning(MU)は、トレーニング手順から与えられたデータポイントのコントリビューションを削除することを目的としている。
フェデレーテッド・アンラーニング(FU)手法が提案されている一方で,新しい手法としてSIFU(Sequential Informed Unlearning)を提案する。
論文 参考訳(メタデータ) (2022-11-21T17:15:46Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - A Multi-agent Reinforcement Learning Approach for Efficient Client
Selection in Federated Learning [17.55163940659976]
Federated Learning(FL)は、クライアントデバイスが共有モデルを共同で学習することを可能にするトレーニングテクニックである。
モデル精度、処理遅延、通信効率を協調的に最適化する効率的なFLフレームワークを設計する。
実験により、FedMarlは処理遅延と通信コストを大幅に削減して、モデルの精度を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-01-09T05:55:17Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
我々は,無線ネットワークにおける階層型フェデレーション学習(HFL)アルゴリズムを特徴付ける理論モデルを開発した。
分析の結果,HFLの学習性能は,ハイモービル利用者の学習能力が著しく低下していることが判明した。
これらの問題を回避するため,我々はMACFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-20T10:46:58Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - FedU: A Unified Framework for Federated Multi-Task Learning with
Laplacian Regularization [15.238123204624003]
フェデレート・マルチタスク・ラーニング(FMTL)は、フェデレーション・ラーニングにおけるクライアント間の統計的多様性を捉える自然な選択肢として登場した。
統計的多様性を超えてFMTLを解き放つために、ラプラシア正規化を用いて新しいFMTL FedUを策定する。
論文 参考訳(メタデータ) (2021-02-14T13:19:43Z) - Federated Unlearning [24.60965999954735]
Federated Learning(FL)は、有望な分散機械学習(ML)パラダイムとして登場した。
忘れられる権利」とデータ中毒攻撃に対抗するための実用的なニーズは、訓練されたFLモデルから特定のトレーニングデータを削除または解読できる効率的な技術を必要とします。
FedEraser は、フェデレーション クライアントのデータがグローバル FL モデルに与える影響を排除することができる最初のフェデレーション未学習方法論です。
論文 参考訳(メタデータ) (2020-12-27T08:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。