Transfer Learning for Spatial Autoregressive Models with Application to U.S. Presidential Election Prediction
- URL: http://arxiv.org/abs/2405.15600v2
- Date: Sat, 7 Sep 2024 08:59:57 GMT
- Title: Transfer Learning for Spatial Autoregressive Models with Application to U.S. Presidential Election Prediction
- Authors: Hao Zeng, Wei Zhong, Xingbai Xu,
- Abstract summary: We propose a novel transfer learning framework within the SAR model, called as tranSAR.
Our framework enhances estimation and prediction by leveraging information from similar source data.
We demonstrate our method's effectiveness in predicting outcomes in U.S. presidential swing states, where it outperforms traditional methods.
- Score: 10.825562180226424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is important to incorporate spatial geographic information into U.S. presidential election analysis, especially for swing states. The state-level analysis also faces significant challenges of limited spatial data availability. To address the challenges of spatial dependence and small sample sizes in predicting U.S. presidential election results using spatially dependent data, we propose a novel transfer learning framework within the SAR model, called as tranSAR. Classical SAR model estimation often loses accuracy with small target data samples. Our framework enhances estimation and prediction by leveraging information from similar source data. We introduce a two-stage algorithm, consisting of a transferring stage and a debiasing stage, to estimate parameters and establish theoretical convergence rates for the estimators. Additionally, if the informative source data are unknown, we propose a transferable source detection algorithm using spatial residual bootstrap to maintain spatial dependence and derive its detection consistency. Simulation studies show our algorithm substantially improves the classical two-stage least squares estimator. We demonstrate our method's effectiveness in predicting outcomes in U.S. presidential swing states, where it outperforms traditional methods. In addition, our tranSAR model predicts that the Democratic party will win the 2024 U.S. presidential election.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - A step towards the integration of machine learning and small area
estimation [0.0]
We propose a predictor supported by machine learning algorithms which can be used to predict any population or subpopulation characteristics.
We study only small departures from the assumed model, to show that our proposal is a good alternative in this case as well.
What is more, we propose the method of the accuracy estimation of machine learning predictors, giving the possibility of the accuracy comparison with classic methods.
arXiv Detail & Related papers (2024-02-12T09:43:17Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
"Score-based assessment" framework for estimating transferability of pre-trained speech models.
We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates.
Our framework efficiently computes transferability scores without actual fine-tuning of candidate models or layers.
arXiv Detail & Related papers (2023-06-01T04:52:26Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Novelty Detection for Election Fraud: A Case Study with Agent-Based
Simulation Data [6.692240192392746]
We generate a clean election results dataset without fraud as well as datasets with varying degrees of fraud.
The algorithm determines how similar actual election results are as compared to the predicted results from polling.
We show both the effectiveness of the simulation technique and the machine learning model in its success in identifying fraudulent regions.
arXiv Detail & Related papers (2022-11-29T08:46:36Z) - C-Learning: Learning to Achieve Goals via Recursive Classification [163.7610618571879]
We study the problem of predicting and controlling the future state distribution of an autonomous agent.
Our work lays a principled foundation for goal-conditioned RL as density estimation.
arXiv Detail & Related papers (2020-11-17T19:58:56Z) - On Cokriging, Neural Networks, and Spatial Blind Source Separation for
Multivariate Spatial Prediction [3.416170716497814]
Blind source separation is a pre-processing tool for spatial prediction.
In this paper we investigate the use of spatial blind source separation as a pre-processing tool for spatial prediction.
We compare it with predictions from Cokriging and neural networks in an extensive simulation study as well as a geochemical dataset.
arXiv Detail & Related papers (2020-07-01T10:59:45Z) - Predicting into unknown space? Estimating the area of applicability of
spatial prediction models [0.0]
We suggest a methodology that delineates the "area of applicability" (AOA) that we define as the area, for which the cross-validation error of the model applies.
We test for the ideal threshold by using simulated data and compare the prediction error within the AOA with the cross-validation error of the model.
arXiv Detail & Related papers (2020-05-16T10:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.