DiffCalib: Reformulating Monocular Camera Calibration as Diffusion-Based Dense Incident Map Generation
- URL: http://arxiv.org/abs/2405.15619v1
- Date: Fri, 24 May 2024 15:05:04 GMT
- Title: DiffCalib: Reformulating Monocular Camera Calibration as Diffusion-Based Dense Incident Map Generation
- Authors: Xiankang He, Guangkai Xu, Bo Zhang, Hao Chen, Ying Cui, Dongyan Guo,
- Abstract summary: We leverage the comprehensive visual knowledge embedded in pre-trained diffusion models to enable more robust and accurate monocular camera intrinsic estimation.
Our model achieves state-of-the-art performance, gaining up to a 40% reduction in prediction errors.
- Score: 13.772897737616649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular camera calibration is a key precondition for numerous 3D vision applications. Despite considerable advancements, existing methods often hinge on specific assumptions and struggle to generalize across varied real-world scenarios, and the performance is limited by insufficient training data. Recently, diffusion models trained on expansive datasets have been confirmed to maintain the capability to generate diverse, high-quality images. This success suggests a strong potential of the models to effectively understand varied visual information. In this work, we leverage the comprehensive visual knowledge embedded in pre-trained diffusion models to enable more robust and accurate monocular camera intrinsic estimation. Specifically, we reformulate the problem of estimating the four degrees of freedom (4-DoF) of camera intrinsic parameters as a dense incident map generation task. The map details the angle of incidence for each pixel in the RGB image, and its format aligns well with the paradigm of diffusion models. The camera intrinsic then can be derived from the incident map with a simple non-learning RANSAC algorithm during inference. Moreover, to further enhance the performance, we jointly estimate a depth map to provide extra geometric information for the incident map estimation. Extensive experiments on multiple testing datasets demonstrate that our model achieves state-of-the-art performance, gaining up to a 40% reduction in prediction errors. Besides, the experiments also show that the precise camera intrinsic and depth maps estimated by our pipeline can greatly benefit practical applications such as 3D reconstruction from a single in-the-wild image.
Related papers
- Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration [34.18403601269181]
DM-Calib is a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image.
We introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics.
By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation.
arXiv Detail & Related papers (2024-11-26T09:04:37Z) - GRAPE: Generalizable and Robust Multi-view Facial Capture [12.255610707737548]
Deep learning-based multi-view facial capture methods have shown impressive accuracy while being several orders of magnitude faster than a traditional mesh registration pipeline.
In this study, we aim to improve the generalization ability so that a trained model can be readily used for inference (i.e. capture new data) on a different camera array.
Experiments on the FaMoS and FaceScape datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-14T13:24:17Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Wide-Baseline Relative Camera Pose Estimation with Directional Learning [46.21836501895394]
We introduce DirectionNet, which estimates discrete distributions over the 5D relative pose space using a novel parameterization to make the estimation problem tractable.
We evaluate our model on challenging synthetic and real pose estimation datasets constructed from Matterport3D and InteriorNet.
arXiv Detail & Related papers (2021-06-07T04:46:09Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.