Effective Confidence Region Prediction Using Probability Forecasters
- URL: http://arxiv.org/abs/2405.15642v1
- Date: Fri, 24 May 2024 15:33:08 GMT
- Title: Effective Confidence Region Prediction Using Probability Forecasters
- Authors: David Lindsay, Sian Lindsay,
- Abstract summary: We present a technique to generate confidence region predictions from conditional probability estimates.
Approximately 44% of experiments demonstrate well-calibrated confidence region predictions.
Our results illustrate the practical benefits of effective confidence region prediction with respect to medical diagnostics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence region prediction is a practically useful extension to the commonly studied pattern recognition problem. Instead of predicting a single label, the constraint is relaxed to allow prediction of a subset of labels given a desired confidence level 1-delta. Ideally, effective region predictions should be (1) well calibrated - predictive regions at confidence level 1-delta should err with relative frequency at most delta and (2) be as narrow (or certain) as possible. We present a simple technique to generate confidence region predictions from conditional probability estimates (probability forecasts). We use this 'conversion' technique to generate confidence region predictions from probability forecasts output by standard machine learning algorithms when tested on 15 multi-class datasets. Our results show that approximately 44% of experiments demonstrate well-calibrated confidence region predictions, with the K-Nearest Neighbour algorithm tending to perform consistently well across all data. Our results illustrate the practical benefits of effective confidence region prediction with respect to medical diagnostics, where guarantees of capturing the true disease label can be given.
Related papers
- Deterministic Object Pose Confidence Region Estimation [13.545295537964337]
6D pose confidence region estimation has emerged as a critical direction for uncertainty quantification.<n>Current sampling-based approach suffers from critical limitations that severely impede their practical deployment.<n>We propose a deterministic and efficient method for estimating pose confidence regions.
arXiv Detail & Related papers (2025-06-28T02:03:34Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.
We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
We develop more reliable methods for uncertainty in neural TPP models via the framework of conformal prediction.
A primary objective is to generate a distribution-free joint prediction region for an event's arrival time and mark, with a finite-sample marginal coverage guarantee.
arXiv Detail & Related papers (2024-01-09T15:28:29Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
arXiv Detail & Related papers (2023-05-18T09:52:06Z) - Neural Predictive Monitoring under Partial Observability [4.1316328854247155]
We present a learning-based method for predictive monitoring (PM) that produces accurate and reliable reachability predictions despite partial observability (PO)
Our method results in highly accurate reachability predictions and error detection, as well as tight prediction regions with guaranteed coverage.
arXiv Detail & Related papers (2021-08-16T15:08:20Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.