論文の概要: EmpathicStories++: A Multimodal Dataset for Empathy towards Personal Experiences
- arxiv url: http://arxiv.org/abs/2405.15708v1
- Date: Fri, 24 May 2024 16:57:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 13:11:11.240367
- Title: EmpathicStories++: A Multimodal Dataset for Empathy towards Personal Experiences
- Title(参考訳): EmpathicStories++: 個人エクスペリエンスに対する共感のためのマルチモーダルデータセット
- Authors: Jocelyn Shen, Yubin Kim, Mohit Hulse, Wazeer Zulfikar, Sharifa Alghowinem, Cynthia Breazeal, Hae Won Park,
- Abstract要約: EmpathicStories++は共感に関する最初の時系列データセットで、参加者の家で1ヶ月以上にわたりソーシャルロボットをデプロイした。
2つの文脈で評価された個人的経験に基づいて、他人の物語に対する共感を予測する新しいタスクを導入する。
- 参考スコア(独自算出の注目度): 19.626851022750067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset (https://mitmedialab.github.io/empathic-stories-multimodal/) containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants' homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals' empathy toward others' stories based on their personal experiences, evaluated in two contexts: participants' own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.
- Abstract(参考訳): 共感のモデル化は、人間同士の相互作用の対人的・経験的な次元に根ざした複雑な取り組みであり、AIの中では未解決の問題である。
既存の共感データセットは、共感応答の豊かさを捉えるのに不足している。
EmpathicStories++データセット(https://mitmedialab.github.io/empathic-stories-multimodal/)には、脆弱な経験を共有し、AIエージェントと共感的な話を読み取る41人の参加者の53時間のビデオ、オーディオ、テキストデータが含まれている。
EmpathicStories++は共感に関する最初の時系列データセットであり、参加者がAIエージェントと自然な共感的なストーリーテリングのインタラクションに従事しているため、参加者の自宅に1ヶ月にわたってソーシャルロボットを配置した。
次に、個人の体験に基づいて、他人のストーリーに対する共感を予測する新しいタスクを紹介し、参加者自身の共有ストーリーコンテキストと、読んだストーリーに対する反映の2つの文脈で評価する。
我々は、現状のモデルを用いてこのタスクをベンチマークし、文脈的および縦長の共感モデリングにおける将来の改善の道を開く。
私たちの研究は、共感型AIシステムの開発と人間の共感の複雑さを理解するための貴重なリソースを提供する。
関連論文リスト
- APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - Enablers and Barriers of Empathy in Software Developer and User
Interaction: A Mixed Methods Case Study [11.260371501613994]
開発者とエンドユーザ間の共感の実践について検討した。
我々は共感を誘発するために必要な認識の性質と共感の実現者を特定した。
共感の障壁と、これらの障壁を克服するための潜在的な戦略を発見した。
論文 参考訳(メタデータ) (2024-01-17T06:42:21Z) - Empathy Detection from Text, Audiovisual, Audio or Physiological Signals: Task Formulations and Machine Learning Methods [5.7306786636466995]
共感の検出は、社会、医療、教育に潜在的な応用がある。
広範かつ重複するトピックであるにもかかわらず、機械学習を利用した共感検出の道はいまだに探索されていない。
我々は、Affective Computingベースの共感領域における課題、研究ギャップ、潜在的な応用について論じる。
論文 参考訳(メタデータ) (2023-10-30T08:34:12Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
オープンドメインでのロボット操作における重要な課題は、ロボットの多様性と一般化可能なスキルの獲得方法である。
単発模倣学習の最近の研究は、訓練されたポリシーを実証に基づく新しいタスクに移行する可能性を示唆している。
本稿では,エージェントがマルチモーダルな知覚で数百の現実世界のスキルを一般化する可能性を解き放つことを目的とする。
論文 参考訳(メタデータ) (2023-07-02T15:33:31Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - Empathic Conversations: A Multi-level Dataset of Contextualized
Conversations [24.54662089036839]
このデータセットは、パーソナリティ、感情、性格特性、および個人レベルの人口統計情報とともに、複数の形式で共感を示す最初のものである。
人々は他者の共感に対する認識に違いがあり、これらの違いは人格や人口統計といった特定の特徴と関連している。
論文 参考訳(メタデータ) (2022-05-25T11:56:29Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - Modeling User Empathy Elicited by a Robot Storyteller [2.309914459672557]
本稿では,ロボットエージェントとのインタラクション中に引き起こされたユーザ共感をモデル化するための最初のアプローチを提案する。
我々は8つの古典的機械学習モデルと2つのディープラーニングモデルを用いて共感を検出する実験を行った。
XGBoostをベースとした我々の最高性能のアプローチは、ビデオの共感を検出すると精度が69%、AUCが72%に達しました。
論文 参考訳(メタデータ) (2021-07-29T21:56:19Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Towards Persona-Based Empathetic Conversational Models [58.65492299237112]
共感的会話モデルは、多くのドメインにおけるユーザの満足度とタスク結果を改善することが示されている。
心理学において、ペルソナは人格と高い相関関係があることが示され、それによって共感に影響を及ぼす。
本研究では,ペルソナに基づく共感的会話に対する新たな課題を提案し,ペルソナが共感的反応に与える影響に関する最初の経験的研究を示す。
論文 参考訳(メタデータ) (2020-04-26T08:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。