Signatures of Integrability and Exactly Solvable Dynamics in an Infinite-Range Many-Body Floquet Spin System
- URL: http://arxiv.org/abs/2405.15797v2
- Date: Thu, 25 Jul 2024 04:50:29 GMT
- Title: Signatures of Integrability and Exactly Solvable Dynamics in an Infinite-Range Many-Body Floquet Spin System
- Authors: Harshit Sharma, Udaysinh T. Bhosale,
- Abstract summary: We show that for $J=1/2$ the model still exhibits integrability for an even number of qubits only.
We analytically and numerically find that the maximum value of time-evolved concurrence ($C_mboxmax$) decreases with $N$, indicating the multipartite nature of entanglement.
- Score: 0.5371337604556311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a recent work Sharma and Bhosale [Phys. Rev. B, 109, 014412 (2024)], $N$-spin Floquet model having infinite range Ising interaction was introduced. In this paper, we generalized the strength of interaction to $J$, such that $J=1$ case reduces to the aforementioned work. We show that for $J=1/2$ the model still exhibits integrability for an even number of qubits only. We analytically solve the cases of $6$, $8$, $10$, and $12$ qubits, finding its eigensystem, dynamics of entanglement for various initial states, and the unitary evolution operator. These quantities exhibit the signature of quantum integrability (QI). For the general case of even-$N > 12$ qubits, we conjuncture the presence of QI using the numerical evidences such as spectrum degeneracy, and the exact periodic nature of both the entanglement dynamics and the time-evolved unitary operator. We numerically show the absence of QI for odd $N$ by observing a violation of the signatures of QI. We analytically and numerically find that the maximum value of time-evolved concurrence ($C_{\mbox{max}}$) decreases with $N$, indicating the multipartite nature of entanglement. Possible experiments to verify our results are discussed.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Exactly solvable dynamics and signatures of integrability in an
infinite-range many-body Floquet spin system [0.6345523830122168]
We study $N$ qubits having infinite-range Ising interaction and subjected to periodic pulse of external magnetic field.
We solve the cases of $N=5$ to $11$ qubits analytically, finding its eigensystem, the dynamics of the entanglement for various initial states, and the unitary evolution operator.
arXiv Detail & Related papers (2023-07-26T11:41:52Z) - The Timescales of Quantum Breaking [0.0]
A classical description generically breaks down after a finite quantum break-time $t_q$.
We construct a new prototype model that features numerous dynamically accessible quantum modes.
As an outlook, we point out possibilities for transferring our results to black holes and expanding spacetimes.
arXiv Detail & Related papers (2023-06-15T18:00:02Z) - An operator growth hypothesis for open quantum systems [0.0]
We study the dissipative $q$-body Sachdev-Ye-Kitaev (SYK$_q$) model.
We conjecture to be generic for any dissipative (open) quantum systems.
arXiv Detail & Related papers (2022-12-12T19:00:12Z) - Universality and its limits in non-Hermitian many-body quantum chaos
using the Sachdev-Ye-Kitaev model [0.0]
Spectral rigidity in Hermitian quantum chaotic systems signals the presence of dynamical universal features at timescales that can be much shorter than the Heisenberg time.
We study the analog of this timescale in many-body non-Hermitian quantum chaos by a detailed analysis of long-range spectral correlators.
arXiv Detail & Related papers (2022-11-03T08:45:19Z) - Symmetry Classification and Universality in Non-Hermitian Many-Body
Quantum Chaos by the Sachdev-Ye-Kitaev Model [0.0]
For Hermitian Hamiltonians, quantum chaotic motion is related to random matrix theory spectral correlations.
We show that local level statistics, which probe the dynamics around the Heisenberg time, of a non-Hermitian $q$-body Sachdev-Ye-Kitev model with $N$ Majorana fermions, are also well described by random matrix theory.
We identify $19$ out of the $38$ non-Hermitian universality classes in the nHSYK model, including those corresponding to the way.
arXiv Detail & Related papers (2021-10-07T13:26:17Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.