論文の概要: Pseudo Channel: Time Embedding for Motor Imagery Decoding
- arxiv url: http://arxiv.org/abs/2405.15812v1
- Date: Tue, 21 May 2024 12:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:39:33.924335
- Title: Pseudo Channel: Time Embedding for Motor Imagery Decoding
- Title(参考訳): Pseudo Channel: モーターイメージデコードのための時間埋め込み
- Authors: Zhengqing Miao, Meirong Zhao,
- Abstract要約: 運動画像(MI)に基づく脳波は、外部デバイスを直接神経制御し、神経リハビリテーションを進めるためのフロンティアである。
本研究は、MI-EEG信号の復号精度を高めるために擬似チャネルとして使用される、旅行波ベースの時間埋め込みと呼ばれる新しい時間埋め込み手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor imagery (MI) based EEG represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation. This study introduces a novel time embedding technique, termed traveling-wave based time embedding, utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures. Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference, our approach captures time-related changes for different participants based on a priori knowledge. Through extensive experimentation with multiple participants, we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture. Significantly, our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy, particularly for participants typically considered "EEG-illiteracy". As a novel direction in EEG research, the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.
- Abstract(参考訳): 運動画像(MI)に基づく脳波は、外部デバイスを直接神経制御し、神経リハビリテーションを進めるためのフロンティアである。
本研究では、様々なニューラルネットワークアーキテクチャにおけるMI-EEG信号の復号精度を高めるために擬似チャネルとして使用される、旅行波ベースの時間埋め込みと呼ばれる新しい時間埋め込み手法を提案する。
個人差におけるMI-EEGの時間的ダイナミクスを考慮できない従来のニューラルネットワーク手法とは異なり、我々のアプローチは、事前知識に基づいて、異なる参加者に対する時間的変化をキャプチャする。
複数の参加者による広範囲な実験を通して、この手法は分類精度を向上するだけでなく、トランスフォーマーアーキテクチャで使われる位置符号化と比較して、個人差への適応性も向上することを示した。
特に「EEGリテラシー」とみなす参加者に対しては,旅行波をベースとした時間埋め込みがデコード精度を著しく向上させることが明らかとなった。
脳波研究の新たな方向性として、旅行波ベースの時間埋め込みは、ニューラルネットワーク復号戦略に対する新たな洞察を提供するだけでなく、神経科学における注意機構の研究や脳波信号のより深い理解のための新たな道筋も広げている。
関連論文リスト
- MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI [50.55024115943266]
我々は、fMRI条件の特徴ベクトルを生成するためにMindFormerと呼ばれる新しいトランスフォーマーアーキテクチャを導入する。
MindFormerは,1)fMRI信号から意味論的に意味のある特徴を抽出するIP-Adapterに基づく新しいトレーニング戦略,2)fMRI信号の個人差を効果的に捉える主観的トークンと線形層である。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
脳コンピュータインタフェース(BCI)は、脳とコンピュータまたは外部装置との間の非刺激的直接的、時折双方向通信リンクである。
マルチクラスモータ画像分類における最先端性能を実現するために特別に設計されたディープニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-04T09:00:34Z) - Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
脳波信号から特定のタスクに与えられた注意状態、すなわち注意度を復元できる新しいフレームワークを提案する。
従来は電極による脳波の空間的関係をよく検討していたが, トランスフォーマネットワークを用いた空間的・時間的情報の利用も提案する。
提案したネットワークは、2つの公開データセットでトレーニングされ、検証され、最先端のモデルよりも高い結果が得られる。
論文 参考訳(メタデータ) (2022-04-04T08:05:33Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - On the use of generative deep neural networks to synthesize artificial
multichannel EEG signals [11.634729459989996]
本稿では,スペクトル時間型脳波パターンを示す時系列マルチチャネル信号を合成的に生成する手法を提案する。
脳波パターンは運動画像の異なる条件下で観察されることが期待される。
論文 参考訳(メタデータ) (2021-02-16T10:18:08Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
本稿では,複数の周波数/時間範囲における特徴表現を探索する深層多スケールニューラルネットワークを提案する。
スペクトル時間情報を用いた脳波信号の表現により,提案手法を多種多様なパラダイムに応用することができる。
論文 参考訳(メタデータ) (2020-03-02T04:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。