論文の概要: Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation
- arxiv url: http://arxiv.org/abs/2405.16266v1
- Date: Sat, 25 May 2024 15:08:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 22:17:06.182343
- Title: Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation
- Title(参考訳): 安全移動ロボットナビゲーションのための強化PPOによる深層強化学習
- Authors: Hamid Taheri, Seyed Rasoul Hosseini,
- Abstract要約: 本研究では,複雑な環境下での自律走行のための移動ロボットの訓練における深層強化学習の適用について検討する。
このロボットは、LiDARセンサデータとディープニューラルネットワークを用いて、障害物を回避しつつ、特定の目標に向かって誘導する制御信号を生成する。
- 参考スコア(独自算出の注目度): 0.7366405857677227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collision-free motion is essential for mobile robots. Most approaches to collision-free and efficient navigation with wheeled robots require parameter tuning by experts to obtain good navigation behavior. This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment. The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles. We employ two reinforcement learning algorithms in the Gazebo simulation environment: Deep Deterministic Policy Gradient and proximal policy optimization. The study introduces an enhanced neural network structure in the Proximal Policy Optimization algorithm to boost performance, accompanied by a well-designed reward function to improve algorithm efficacy. Experimental results conducted in both obstacle and obstacle-free environments underscore the effectiveness of the proposed approach. This research significantly contributes to the advancement of autonomous robotics in complex environments through the application of deep reinforcement learning.
- Abstract(参考訳): 移動ロボットには衝突のない運動が不可欠である。
車輪付きロボットによる衝突のない効率的なナビゲーションには、優れたナビゲーション動作を得るためには、専門家によるパラメータチューニングが必要である。
本研究では,複雑な環境下での自律走行のための移動ロボットの訓練における深層強化学習の適用について検討する。
このロボットは、LiDARセンサデータとディープニューラルネットワークを用いて、障害物を回避しつつ、特定の目標に向かって誘導する制御信号を生成する。
本稿では,ガゼボシミュレーション環境における2つの強化学習アルゴリズム(Deep Deterministic Policy Gradient)と近似ポリシ最適化(proximal Policy Optimization)を採用する。
この研究は、アルゴリズムの有効性を改善するために、よく設計された報酬関数を伴って、性能を向上させるために、プロキシポリシー最適化アルゴリズムに強化されたニューラルネットワーク構造を導入している。
障害物のない環境と障害物のない環境の両方で実施した実験結果は,提案手法の有効性を裏付けるものである。
この研究は、深層強化学習の応用を通じて、複雑な環境における自律ロボット技術の進歩に大きく貢献する。
関連論文リスト
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - Research on Autonomous Robots Navigation based on Reinforcement Learning [13.559881645869632]
我々は、経路計画と意思決定プロセスを最適化するために、Deep Q Network (DQN) と Proximal Policy Optimization (PPO) モデルを使用します。
様々な複雑なシナリオにおいて,これらのモデルの有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2024-07-02T00:44:06Z) - Towards Real-World Efficiency: Domain Randomization in Reinforcement Learning for Pre-Capture of Free-Floating Moving Targets by Autonomous Robots [0.0]
本研究では,微小重力環境下でのロボットプレグラスピングの複雑な課題に対処するために,深層強化学習に基づく制御手法を提案する。
本手法は,ソフトアクター・クリティックな手法を用いて,自由な移動物体にグリッパーが十分に接近できるように,非政治強化学習の枠組みを取り入れたものである。
プレグラスピングのアプローチタスクを効果的に学習するために,エージェントに明確で洞察に富んだフィードバックを提供する報酬関数を開発した。
論文 参考訳(メタデータ) (2024-06-10T16:54:51Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - Robot path planning using deep reinforcement learning [0.0]
強化学習法は、地図のないナビゲーションタスクに代わる手段を提供する。
障害物回避と目標指向ナビゲーションタスクの両方に深部強化学習エージェントを実装した。
報酬関数の変更によるエージェントの挙動と性能の変化を解析する。
論文 参考訳(メタデータ) (2023-02-17T20:08:59Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。