論文の概要: Unraveling the Smoothness Properties of Diffusion Models: A Gaussian Mixture Perspective
- arxiv url: http://arxiv.org/abs/2405.16418v2
- Date: Mon, 14 Oct 2024 03:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:05:32.715622
- Title: Unraveling the Smoothness Properties of Diffusion Models: A Gaussian Mixture Perspective
- Title(参考訳): 拡散モデルの滑らかさ特性の解明:ガウス混合の視点から
- Authors: Yingyu Liang, Zhenmei Shi, Zhao Song, Yufa Zhou,
- Abstract要約: 拡散過程のリプシッツ連続性と第二運動量特性の理論的理解を提供する。
この結果から, 共通データ分布下での拡散過程のダイナミクスについて, より深い理論的知見が得られた。
- 参考スコア(独自算出の注目度): 18.331374727331077
- License:
- Abstract: Diffusion models have made rapid progress in generating high-quality samples across various domains. However, a theoretical understanding of the Lipschitz continuity and second momentum properties of the diffusion process is still lacking. In this paper, we bridge this gap by providing a detailed examination of these smoothness properties for the case where the target data distribution is a mixture of Gaussians, which serves as a universal approximator for smooth densities such as image data. We prove that if the target distribution is a $k$-mixture of Gaussians, the density of the entire diffusion process will also be a $k$-mixture of Gaussians. We then derive tight upper bounds on the Lipschitz constant and second momentum that are independent of the number of mixture components $k$. Finally, we apply our analysis to various diffusion solvers, both SDE and ODE based, to establish concrete error guarantees in terms of the total variation distance and KL divergence between the target and learned distributions. Our results provide deeper theoretical insights into the dynamics of the diffusion process under common data distributions.
- Abstract(参考訳): 拡散モデルは、様々な領域にわたる高品質なサンプルを生成するために急速に進歩した。
しかし、リプシッツの連続性と拡散過程の第二運動量特性に関する理論的理解はいまだに欠けている。
本稿では,このギャップを,画像データなどのスムーズな密度の普遍近似器として機能するガウス分布が混在している場合に,これらの滑らかさ特性を詳細に検証することによって橋渡しする。
対象分布がガウスの$k$-mixtureであれば、拡散過程全体の密度もガウスの$k$-mixtureとなる。
次に、混合成分数$k$とは無関係なリプシッツ定数と第二運動量について、厳密な上界を導出する。
最後に,SDE と ODE をベースとした様々な拡散解法に適用し,対象と学習分布間の全変動距離と KL のばらつきの観点から,具体的な誤差を保証する。
この結果から, 共通データ分布下での拡散過程のダイナミクスについて, より深い理論的知見が得られた。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework [11.71206628091551]
L'evy型積分に基づく離散拡散モデルの誤差解析のための包括的フレームワークを提案する。
我々のフレームワークは、離散拡散モデルにおける現在の理論結果を統一し、強化する。
論文 参考訳(メタデータ) (2024-10-04T16:59:29Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models [82.8261101680427]
滑らかな潜伏空間は、入力潜伏空間上の摂動が出力画像の定常的な変化に対応することを保証している。
この特性は、画像の反転、反転、編集を含む下流タスクにおいて有益である。
スムース拡散(Smooth Diffusion, Smooth Diffusion)は, 高速かつスムーズな拡散モデルである。
論文 参考訳(メタデータ) (2023-12-07T16:26:23Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
拡散モデルは、時間ステップの零点付近で無限のリプシッツをしばしば表すことを示す。
これは、積分演算に依存する拡散過程の安定性と精度に脅威をもたらす。
我々はE-TSDMと呼ばれる新しい手法を提案し、これは0に近い拡散モデルのリプシッツを除去する。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
前方拡散過程における任意の離散状態マルコフ過程の理論的定式化を開発する。
例えばBlackout Diffusion'は、ノイズからではなく、空のイメージからサンプルを生成することを学習する。
論文 参考訳(メタデータ) (2023-05-18T16:24:12Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
デノイング拡散モデル(Denoising diffusion model)は、画像および音声合成における最先端性能を示す最近の生成モデルのクラスである。
本稿では、拡散モデルに対するより一般的な設定での最初の収束結果を提供する。
論文 参考訳(メタデータ) (2022-08-10T12:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。