The Importance of Directional Feedback for LLM-based Optimizers
- URL: http://arxiv.org/abs/2405.16434v2
- Date: Thu, 20 Jun 2024 16:10:50 GMT
- Title: The Importance of Directional Feedback for LLM-based Optimizers
- Authors: Allen Nie, Ching-An Cheng, Andrey Kolobov, Adith Swaminathan,
- Abstract summary: We study the potential of using large language models (LLMs) as an interactive for solving problems in a text space using natural language and numerical feedback.
We design a new LLM-based that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations.
- Score: 23.669705029245645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the potential of using large language models (LLMs) as an interactive optimizer for solving maximization problems in a text space using natural language and numerical feedback. Inspired by the classical optimization literature, we classify the natural language feedback into directional and non-directional, where the former is a generalization of the first-order feedback to the natural language space. We find that LLMs are especially capable of optimization when they are provided with {directional feedback}. Based on this insight, we design a new LLM-based optimizer that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations. Empirically, we show our LLM-based optimizer is more stable and efficient in solving optimization problems, from maximizing mathematical functions to optimizing prompts for writing poems, compared with existing techniques.
Related papers
- Towards Explainable Evolution Strategies with Large Language Models [0.0]
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
arXiv Detail & Related papers (2024-07-11T09:28:27Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities.
This paper asserts that LLMs possess the capability for zero-shot optimization across diverse scenarios.
We introduce a novel population-based method for numerical optimization using LLMs.
arXiv Detail & Related papers (2024-03-04T13:57:37Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.