Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism
- URL: http://arxiv.org/abs/2403.02054v1
- Date: Mon, 4 Mar 2024 13:57:37 GMT
- Title: Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism
- Authors: Shuvayan Brahmachary, Subodh M. Joshi, Aniruddha Panda, Kaushik
Koneripalli, Arun Kumar Sagotra, Harshil Patel, Ankush Sharma, Ameya D.
Jagtap, Kaushic Kalyanaraman
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable reasoning abilities.
This paper asserts that LLMs possess the capability for zero-shot optimization across diverse scenarios.
We introduce a novel population-based method for numerical optimization using LLMs.
- Score: 1.1463861912335864
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable reasoning
abilities, prompting interest in their application as black-box optimizers.
This paper asserts that LLMs possess the capability for zero-shot optimization
across diverse scenarios, including multi-objective and high-dimensional
problems. We introduce a novel population-based method for numerical
optimization using LLMs called Language-Model-Based Evolutionary Optimizer
(LEO). Our hypothesis is supported through numerical examples, spanning
benchmark and industrial engineering problems such as supersonic nozzle shape
optimization, heat transfer, and windfarm layout optimization. We compare our
method to several gradient-based and gradient-free optimization approaches.
While LLMs yield comparable results to state-of-the-art methods, their
imaginative nature and propensity to hallucinate demand careful handling. We
provide practical guidelines for obtaining reliable answers from LLMs and
discuss method limitations and potential research directions.
Related papers
- The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Solving General Natural-Language-Description Optimization Problems with Large Language Models [34.50671063271608]
We propose a novel framework called OptLLM that augments LLMs with external solvers.
OptLLM accepts user queries in natural language, convert them into mathematical formulations and programming codes, and calls the solvers to calculate the results.
Some features of OptLLM framework have been available for trial since June 2023.
arXiv Detail & Related papers (2024-07-09T07:11:10Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - The Importance of Directional Feedback for LLM-based Optimizers [23.669705029245645]
We study the potential of using large language models (LLMs) as an interactive for solving problems in a text space using natural language and numerical feedback.
We design a new LLM-based that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations.
arXiv Detail & Related papers (2024-05-26T05:22:35Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Exploring the True Potential: Evaluating the Black-box Optimization Capability of Large Language Models [32.859634302766146]
Large language models (LLMs) have demonstrated exceptional performance in natural language processing tasks.
This paper endeavors to offer deep insights into the potential of LLMs in optimization.
Our findings reveal both the limitations and advantages of LLMs in optimization.
arXiv Detail & Related papers (2024-04-09T13:17:28Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.