Integrating GNN and Neural ODEs for Estimating Two-Body Interactions in Mixed-Species Collective Motion
- URL: http://arxiv.org/abs/2405.16503v1
- Date: Sun, 26 May 2024 09:47:17 GMT
- Title: Integrating GNN and Neural ODEs for Estimating Two-Body Interactions in Mixed-Species Collective Motion
- Authors: Masahito Uwamichi, Simon K. Schnyder, Tetsuya J. Kobayashi, Satoshi Sawai,
- Abstract summary: We present a novel deep learning framework to estimate the underlying equations of motion from observed trajectories.
Our framework integrates graph neural networks with neural differential equations, enabling effective prediction of two-body interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Analyzing the motion of multiple biological agents, be it cells or individual animals, is pivotal for the understanding of complex collective behaviors. With the advent of advanced microscopy, detailed images of complex tissue formations involving multiple cell types have become more accessible in recent years. However, deciphering the underlying rules that govern cell movements is far from trivial. Here, we present a novel deep learning framework to estimate the underlying equations of motion from observed trajectories, a pivotal step in decoding such complex dynamics. Our framework integrates graph neural networks with neural differential equations, enabling effective prediction of two-body interactions based on the states of the interacting entities. We demonstrate the efficacy of our approach through two numerical experiments. First, we used a simulated data from a toy model to tune the hyperparameters. Based on the obtained hyperparameters, we then applied this approach to a more complex model that describes interacting cells of cellular slime molds. Our results show that the proposed method can accurately estimate the function of two-body interactions, thereby precisely replicating both individual and collective behaviors within these systems.
Related papers
- Decomposing heterogeneous dynamical systems with graph neural networks [0.16492989697868887]
We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneous system.
The learned latent structure and dynamics can be used to virtually decompose the complex system.
arXiv Detail & Related papers (2024-07-27T04:03:12Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-29T02:35:23Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
Systems neuroscience relies on two complementary views of neural data, characterized by single neuron tuning curves and analysis of population activity.
These two perspectives combine elegantly in neural latent variable models that constrain the relationship between latent variables and neural activity.
We propose feature sharing across neural tuning curves, which significantly improves performance and leads to better-behaved optimization.
arXiv Detail & Related papers (2022-10-06T18:37:49Z) - Learning Anisotropic Interaction Rules from Individual Trajectories in a
Heterogeneous Cellular Population [0.0]
We develop WSINDy for second order IPSs to model the movement of communities of cells.
Our approach learns the interaction rules that govern the dynamics of a heterogeneous population of migrating cells.
We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.
arXiv Detail & Related papers (2022-04-29T15:00:21Z) - Learning Swarm Interaction Dynamics from Density Evolution [0.0]
We consider the problem of understanding the coordinated movements of biological or artificial swarms.
We describe the dynamics of the swarm based on pairwise interactions according to a Cucker-Smale flocking model.
We incorporate the augmented system in an iterative optimization scheme to learn the dynamics of the interacting agents from observations of the swarm's density evolution.
arXiv Detail & Related papers (2021-12-05T20:18:48Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
Data-driven dynamic models of cell biology can be used to predict cell response to unseen perturbations.
Recent work had demonstrated the derivation of interpretable models with explicit interaction terms.
This work aims to extend the range of applicability of this model inference approach to a diversity of biological systems.
arXiv Detail & Related papers (2021-04-13T19:15:56Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.