論文の概要: Causal Concept Embedding Models: Beyond Causal Opacity in Deep Learning
- arxiv url: http://arxiv.org/abs/2405.16507v1
- Date: Sun, 26 May 2024 10:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:49:07.167242
- Title: Causal Concept Embedding Models: Beyond Causal Opacity in Deep Learning
- Title(参考訳): モデルに因果概念を組み込む - ディープラーニングにおける因果オパシティを超えて
- Authors: Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski, Marc Langheinrich,
- Abstract要約: 因果不透明性(英: Causal opacity)とは、ディープニューラルネットワーク(DNN)推論の根底にある「隠れた」因果構造を理解することの難しさを指す。
因果概念埋め込みモデル(Causal Concept Embedding Models, Causal CEMs)は、意思決定プロセスが設計によって因果的に透明である解釈可能なモデルのクラスである。
- 参考スコア(独自算出の注目度): 7.344892358429039
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Causal opacity denotes the difficulty in understanding the "hidden" causal structure underlying a deep neural network's (DNN) reasoning. This leads to the inability to rely on and verify state-of-the-art DNN-based systems especially in high-stakes scenarios. For this reason, causal opacity represents a key open challenge at the intersection of deep learning, interpretability, and causality. This work addresses this gap by introducing Causal Concept Embedding Models (Causal CEMs), a class of interpretable models whose decision-making process is causally transparent by design. The results of our experiments show that Causal CEMs can: (i) match the generalization performance of causally-opaque models, (ii) support the analysis of interventional and counterfactual scenarios, thereby improving the model's causal interpretability and supporting the effective verification of its reliability and fairness, and (iii) enable human-in-the-loop corrections to mispredicted intermediate reasoning steps, boosting not just downstream accuracy after corrections but also accuracy of the explanation provided for a specific instance.
- Abstract(参考訳): 因果不透明性(英: Causal opacity)とは、ディープニューラルネットワーク(DNN)推論の根底にある「隠れた」因果構造を理解することの難しさを指す。
これにより、特に高度なシナリオにおいて、最先端のDNNベースのシステムを頼りにし、検証することができない。
このため、因果不透明性は、深層学習、解釈可能性、因果性の交差における鍵となるオープンな課題である。
この研究は、因果概念埋め込みモデル(Causal Concept Embedding Models, Causal CEMs)を導入することで、このギャップに対処する。
実験の結果,Causal CEMは次のようなことが可能であった。
(i)因果オパクモデルの一般化性能に適合する。
二 介入及び反事実シナリオの分析を支援して、モデルの因果解釈性を改善し、その信頼性及び公正性の有効検証を支援すること。
三 修正後の下流の精度を向上するとともに、特定事例に対する説明の正確性を向上し、中間推論ステップの誤予測を可能にすること。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:02:14Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [85.67870425656368]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Context De-confounded Emotion Recognition [12.037240778629346]
コンテキストアウェア感情認識(CAER)は、対象者の感情状態を文脈情報で知覚することを目的としている。
長年見過ごされてきた問題は、既存のデータセットのコンテキストバイアスが感情状態のかなり不均衡な分布をもたらすことである。
本稿では、そのようなバイアスの影響からモデルを切り離し、CAERタスクにおける変数間の因果関係を定式化する因果関係に基づく視点を提供する。
論文 参考訳(メタデータ) (2023-03-21T15:12:20Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Contrastive Reasoning in Neural Networks [26.65337569468343]
因果クラス依存性を識別する機能に基づいて構築された推論は、フィードフォワード推論と呼ばれる。
本稿では,コントラスト推論の構造を形式化し,ニューラルネットワークのコントラスト概念を抽出する手法を提案する。
平均精度の3.47%、2.56%、5.48%の改善を報告することにより、歪み下での対比認識の価値を実証する。
論文 参考訳(メタデータ) (2021-03-23T05:54:36Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。