AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model
- URL: http://arxiv.org/abs/2405.16508v1
- Date: Sun, 26 May 2024 10:19:04 GMT
- Title: AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model
- Authors: Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Marc Langhenirich,
- Abstract summary: Concept Bottleneck Models enhance the interpretability of neural networks by integrating a layer of human-understandable concepts.
"AnyCBM" transforms any existing trained model into a Concept Bottleneck Model with minimal impact on computational resources.
- Score: 7.674744385997066
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interpretable deep learning aims at developing neural architectures whose decision-making processes could be understood by their users. Among these techniqes, Concept Bottleneck Models enhance the interpretability of neural networks by integrating a layer of human-understandable concepts. These models, however, necessitate training a new model from the beginning, consuming significant resources and failing to utilize already trained large models. To address this issue, we introduce "AnyCBM", a method that transforms any existing trained model into a Concept Bottleneck Model with minimal impact on computational resources. We provide both theoretical and experimental insights showing the effectiveness of AnyCBMs in terms of classification performances and effectivenss of concept-based interventions on downstream tasks.
Related papers
- Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
We propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models.
The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers.
We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy.
arXiv Detail & Related papers (2024-03-28T15:22:29Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
arXiv Detail & Related papers (2023-11-18T15:50:07Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts.
Recent work has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened.
We propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions.
arXiv Detail & Related papers (2023-09-29T02:04:24Z) - Relational Concept Bottleneck Models [13.311396882130033]
Concept Bottleneck Models (CBMs) are not designed to solve problems.
R-CBMs are capable of both representing standard CBMs and relational GNNs.
In particular, we show that R-CBMs support the generation of concept-based explanations.
arXiv Detail & Related papers (2023-08-23T08:25:33Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
We present an extension to the method of concept detection, named emphconcept backpropagation, which provides a way of analysing how the information representing a given concept is internalised in a given neural network model.
arXiv Detail & Related papers (2023-07-24T08:21:13Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
arXiv Detail & Related papers (2022-02-03T08:30:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.