論文の概要: A Study on Unsupervised Anomaly Detection and Defect Localization using Generative Model in Ultrasonic Non-Destructive Testing
- arxiv url: http://arxiv.org/abs/2405.16580v1
- Date: Sun, 26 May 2024 14:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:19:32.373463
- Title: A Study on Unsupervised Anomaly Detection and Defect Localization using Generative Model in Ultrasonic Non-Destructive Testing
- Title(参考訳): 超音波非破壊検査における生成モデルを用いた教師なし異常検出と欠陥位置推定に関する研究
- Authors: Yusaku Ando, Miya Nakajima, Takahiro Saitoh, Tsuyoshi Kato,
- Abstract要約: 構造物における人工材料の劣化は深刻な社会問題となっている。
レーザー超音波可視化試験(LUVT)は、超音波伝搬の可視化を可能にする。
本稿では,異常検出手法を用いたLUVT自動検査手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the deterioration of artificial materials used in structures has become a serious social issue, increasing the importance of inspections. Non-destructive testing is gaining increased demand due to its capability to inspect for defects and deterioration in structures while preserving their functionality. Among these, Laser Ultrasonic Visualization Testing (LUVT) stands out because it allows the visualization of ultrasonic propagation. This makes it visually straightforward to detect defects, thereby enhancing inspection efficiency. With the increasing number of the deterioration structures, challenges such as a shortage of inspectors and increased workload in non-destructive testing have become more apparent. Efforts to address these challenges include exploring automated inspection using machine learning. However, the lack of anomalous data with defects poses a barrier to improving the accuracy of automated inspection through machine learning. Therefore, in this study, we propose a method for automated LUVT inspection using an anomaly detection approach with a diffusion model that can be trained solely on negative examples (defect-free data). We experimentally confirmed that our proposed method improves defect detection and localization compared to general object detection algorithms used previously.
- Abstract(参考訳): 近年, 構造物に使用されている人工物の劣化が深刻な社会問題となり, 検査の重要性が高まっている。
非破壊検査は、機能を維持しながら構造物の欠陥や劣化を検査する能力により、需要が増している。
これらのうち、超音波伝搬の可視化を可能にするため、レーザー超音波可視化試験(LUVT)は際立っている。
これにより、視覚的に欠陥の検出が容易になり、検査効率が向上する。
劣化構造の増加に伴い,非破壊試験における検査員不足や作業負荷の増加といった課題が顕在化している。
これらの課題に対処するための取り組みとしては、マシンラーニングを使用した自動検査の探索がある。
しかし、異常なデータと欠陥の欠如は、機械学習による自動検査の精度向上の障壁となる。
そこで本研究では,負の例(欠陥のないデータ)のみに基づいて学習可能な拡散モデルを用いて,異常検出手法を用いたLUVT自動検査手法を提案する。
提案手法は, 従来の汎用物体検出アルゴリズムと比較して, 欠陥検出と局所化を改善できることを実験的に確認した。
関連論文リスト
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - ATAC-Net: Zoomed view works better for Anomaly Detection [1.024113475677323]
ATAC-Netは、既知の最小限の事前異常から異常を検出する訓練を行うフレームワークである。
我々は、その優位性を、同等の設定で現在の最先端技術と比較する。
論文 参考訳(メタデータ) (2024-06-20T15:18:32Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Segment Anything in Defect Detection [38.85728242930962]
DefectSAMは、ノイズの多い熱画像に欠陥を分割するための新しいアプローチである。
既存の最先端セグメンテーションアルゴリズムを超え、欠陥検出率を大幅に改善する。
論文 参考訳(メタデータ) (2023-11-17T00:28:19Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。