論文の概要: Transfer Learning Under High-Dimensional Graph Convolutional Regression Model for Node Classification
- arxiv url: http://arxiv.org/abs/2405.16672v1
- Date: Sun, 26 May 2024 19:30:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:48:31.568173
- Title: Transfer Learning Under High-Dimensional Graph Convolutional Regression Model for Node Classification
- Title(参考訳): ノード分類のための高次元グラフ畳み込み回帰モデルによる伝達学習
- Authors: Jiachen Chen, Danyang Huang, Liyuan Wang, Kathryn L. Lunetta, Debarghya Mukherjee, Huimin Cheng,
- Abstract要約: グラフ畳み込み多相ロジスティック回帰(GCR)モデルと、トランス-GCRと呼ばれるGCRモデルに基づく伝達学習手法を提案する。
我々は,高次元環境下でのGCRモデルで得られた推定値について理論的に保証する。
- 参考スコア(独自算出の注目度): 20.18595334666282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Node classification is a fundamental task, but obtaining node classification labels can be challenging and expensive in many real-world scenarios. Transfer learning has emerged as a promising solution to address this challenge by leveraging knowledge from source domains to enhance learning in a target domain. Existing transfer learning methods for node classification primarily focus on integrating Graph Convolutional Networks (GCNs) with various transfer learning techniques. While these approaches have shown promising results, they often suffer from a lack of theoretical guarantees, restrictive conditions, and high sensitivity to hyperparameter choices. To overcome these limitations, we propose a Graph Convolutional Multinomial Logistic Regression (GCR) model and a transfer learning method based on the GCR model, called Trans-GCR. We provide theoretical guarantees of the estimate obtained under GCR model in high-dimensional settings. Moreover, Trans-GCR demonstrates superior empirical performance, has a low computational cost, and requires fewer hyperparameters than existing methods.
- Abstract(参考訳): ノード分類は基本的なタスクであるが、多くの現実シナリオにおいてノード分類ラベルを取得することは困難でコストがかかる。
トランスファーラーニングは、ソースドメインからの知識を活用して、ターゲットドメインでの学習を強化することで、この問題に対処するための有望なソリューションとして登場した。
ノード分類のための既存の転送学習手法は主に、グラフ畳み込みネットワーク(GCN)と様々な転送学習技術の統合に焦点を当てている。
これらのアプローチは有望な結果を示しているが、理論的な保証の欠如、制限的な条件、ハイパーパラメータの選択に対する高い感度に悩まされることが多い。
これらの制約を克服するために、グラフ畳み込み多相ロジスティック回帰(GCR)モデルと、Trans-GCRと呼ばれるGCRモデルに基づく転送学習手法を提案する。
我々は,高次元環境下でのGCRモデルで得られた推定値について理論的に保証する。
さらに、Trans-GCRは経験的性能が優れ、計算コストが低く、既存の手法よりもハイパーパラメータが少ない。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための主要なパラダイムとして登場した。
GNNは、一般化の欠如や解釈可能性の低下といった課題に直面している。
トポロジカルレベル降下正則化器であるxAI-Dropを導入する。
論文 参考訳(メタデータ) (2024-07-29T14:53:45Z) - Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models [30.867447814409623]
グラフニューラルネットワーク(GNN)は、グラフの基本課題であるノード分類において優れた能力を持つ。
本稿では,Large Language Models(LLM)とGNNを統合する新しい手法を提案する。
我々のモデルでは,ラベル付きデータによるノード分類精度を著しく向上し,最先端のベースラインをかなりのマージンで超えた。
論文 参考訳(メタデータ) (2024-07-19T02:34:10Z) - HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks [14.139047596566485]
HERTAは、Unfolded GNNの高効率で厳格なトレーニングアルゴリズムである。
HERTAは元のモデルの最適値に収束し、アンフォールドGNNの解釈可能性を維持する。
HERTAの副産物として、正規化および正規化グラフラプラシアンに適用可能な新しいスペクトルスカラー化法を提案する。
論文 参考訳(メタデータ) (2024-03-26T23:03:06Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
本稿では,グラフコントラスト学習(GCL)手法の有効性,一貫性,全体的な能力をより正確に評価するために,拡張された評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T01:47:56Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - On-Device Domain Generalization [93.79736882489982]
ドメインの一般化はデバイス上の機械学習アプリケーションにとって重要である。
知識蒸留がこの問題の解決の有力な候補であることがわかった。
本研究では,教師が配布外データをどのように扱えるかを学生に教えることを目的とした,配布外知識蒸留(OKD)という簡単なアイデアを提案する。
論文 参考訳(メタデータ) (2022-09-15T17:59:31Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
グラフニューラルネットワーク(GNN)は、グラフデータと表現学習能力の包括的な関係を統合する。
オーバースムーシングはノードの最終的な表現を識別不能にし、ノード分類とリンク予測性能を劣化させる。
本稿では,TGCL(Topology-Guided Graph Contrastive Layer)を提案する。
論文 参考訳(メタデータ) (2021-10-26T15:56:16Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。