論文の概要: On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
- arxiv url: http://arxiv.org/abs/2405.16845v1
- Date: Mon, 27 May 2024 05:41:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 17:00:31.483334
- Title: On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
- Title(参考訳): 自己回帰学習型変圧器のメザ最適化について:創発性と機能
- Authors: Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, Chongxuan Li,
- Abstract要約: いくつかの説では、トランスフォーマーはオートレアトレーニング中にmesa-optimizerを学習する。
データモーメントに関する強い仮定は、学習されたメザ最適化器が実行可能な十分な必要条件であることを示す。
- 参考スコア(独自算出の注目度): 34.43255978863601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressively trained transformers have brought a profound revolution to the world, especially with their in-context learning (ICL) ability to address downstream tasks. Recently, several studies suggest that transformers learn a mesa-optimizer during autoregressive (AR) pretraining to implement ICL. Namely, the forward pass of the trained transformer is equivalent to optimizing an inner objective function in-context. However, whether the practical non-convex training dynamics will converge to the ideal mesa-optimizer is still unclear. Towards filling this gap, we investigate the non-convex dynamics of a one-layer linear causal self-attention model autoregressively trained by gradient flow, where the sequences are generated by an AR process $x_{t+1} = W x_t$. First, under a certain condition of data distribution, we prove that an autoregressively trained transformer learns $W$ by implementing one step of gradient descent to minimize an ordinary least squares (OLS) problem in-context. It then applies the learned $\widehat{W}$ for next-token prediction, thereby verifying the mesa-optimization hypothesis. Next, under the same data conditions, we explore the capability limitations of the obtained mesa-optimizer. We show that a stronger assumption related to the moments of data is the sufficient and necessary condition that the learned mesa-optimizer recovers the distribution. Besides, we conduct exploratory analyses beyond the first data condition and prove that generally, the trained transformer will not perform vanilla gradient descent for the OLS problem. Finally, our simulation results verify the theoretical results.
- Abstract(参考訳): 自己回帰訓練されたトランスフォーマーは、特に下流タスクに対処するコンテキスト内学習(ICL)能力によって、世界に大きな革命をもたらした。
近年のいくつかの研究では、トランスフォーマーは自己回帰(AR)プリトレーニング中にメザ最適化を学習し、ICLを実装することが示唆されている。
すなわち、トレーニングされたトランスの前方通過は、内部目的関数をコンテキスト内で最適化するのと等価である。
しかし、実際の非凸トレーニング力学が理想的なメザ最適化に収束するかどうかはまだ不明である。
このギャップを埋めるために、勾配流によって自己回帰的に訓練された一層線形因果自己アテンションモデルの非凸ダイナミクスを、ARプロセス$x_{t+1} = W x_t$で生成する。
まず,データ分布の一定の条件下では,正規最小二乗問題(OLS)を最小化するために勾配降下の1ステップを実装することで,自己回帰的に訓練された変換器が$W$を学習することを示す。
次に、学習した$\widehat{W}$を次トーケン予測に適用し、メザ最適化仮説を検証する。
次に、同じデータ条件下で、得られたメザ最適化器の能力限界について検討する。
データモーメントに関する強い仮定は、学習されたメザ最適化器が分布を回復するのに十分かつ必要な条件であることを示す。
さらに、第1のデータ条件を超えて探索解析を行い、一般に、トレーニングされたトランスフォーマーは、OLS問題に対してバニラ勾配降下を行わないことを示す。
最後に,シミュレーションの結果を理論的に検証した。
関連論文リスト
- Pretrained transformer efficiently learns low-dimensional target functions in-context [40.77319247558742]
勾配降下により最適化された非線形変換器は、ターゲット関数の分布の次元にのみ依存するプロンプト長を持つ、$f_*$ in-contextを学習する。
本結果は,事前学習した変換器の関数クラスの低次元構造への適応性を強調し,サンプル効率の良いICLを実現する。
論文 参考訳(メタデータ) (2024-11-04T19:24:39Z) - Bypassing the Exponential Dependency: Looped Transformers Efficiently Learn In-context by Multi-step Gradient Descent [26.764893400499354]
線形ループ変換器は、コンテキスト内学習において、多段階勾配勾配を効率よく実装できることを示す。
この結果から,入力データが一定条件数である場合,$n = O(d)$であれば,線形ループ変換器の誤差は小さくなることがわかった。
論文 参考訳(メタデータ) (2024-10-15T04:44:23Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
収束ランドスケープの勾配非性アルゴリズムにもかかわらず、回帰損失に高速な流れを示す。
この設定における多層トランスの理論的解析はこれが初めてである。
論文 参考訳(メタデータ) (2024-10-10T18:29:05Z) - Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
大規模言語モデルのコンテキスト内学習は、いくつかの実証的な例から新しいタスクを学ぶのに驚くほど効果的な方法であることが証明されている。
我々は,ディープニューラルネットワークと1つの線形アテンション層からなる変圧器の近似および一般化誤差境界を開発する。
十分に訓練されたトランスフォーマーは、文脈における最小推定リスクを達成し、改善できることを示す。
論文 参考訳(メタデータ) (2024-08-22T08:02:10Z) - How do Transformers perform In-Context Autoregressive Learning? [76.18489638049545]
簡単な次のトークン予測タスクでTransformerモデルをトレーニングする。
トレーニングされたTransformerが、まず$W$ in-contextを学習し、次に予測マッピングを適用することで、次のトークンを予測する方法を示す。
論文 参考訳(メタデータ) (2024-02-08T16:24:44Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
本稿では,意思決定問題における変換器の文脈内学習能力について検討する。
本稿では,変換器が最適動作を予測する教師付き事前学習法であるDPT(Decision-Pretrained Transformer)を導入,研究する。
事前学習した変換器は、オンラインと保守主義の両方をオフラインで探索することで、コンテキスト内における様々なRL問題の解決に利用できる。
論文 参考訳(メタデータ) (2023-06-26T17:58:50Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
トランスフォーマーとしての注意に基づくニューラルネットワークは、意図的学習(ICL)を示す顕著な能力を示した
線形回帰問題のランダムな例に対する変圧器の訓練において、これらのモデルの予測は通常の正方形の非線形性を模倣することを示した。
論文 参考訳(メタデータ) (2023-06-16T15:50:03Z) - Transformers learn to implement preconditioned gradient descent for
in-context learning [41.74394657009037]
いくつかの最近の研究は、変圧器が勾配降下のようなアルゴリズムを実装できることを実証している。
トランスフォーマーは、ランダムな問題インスタンスをトレーニングすることで、そのようなアルゴリズムの実装を学べますか?
注意層が$L$の変圧器では,事前条件付き勾配勾配の反復として$L$を具現化する訓練対象の臨界点が証明される。
論文 参考訳(メタデータ) (2023-06-01T02:35:57Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - Transformers learn in-context by gradient descent [58.24152335931036]
自己回帰目標におけるトランスフォーマーの訓練は、勾配に基づくメタラーニングの定式化と密接に関連している。
トレーニングされたトランスフォーマーがメザ最適化器となる方法,すなわち,前方通過における勾配降下によるモデル学習方法を示す。
論文 参考訳(メタデータ) (2022-12-15T09:21:21Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
バランスの取れない勾配がトレーニングの不安定性の根本原因ではないことを示す。
我々は,早期段階のトレーニングを安定させ,後期段階においてその潜在能力を最大限に活用するためのアドミンを提案する。
論文 参考訳(メタデータ) (2020-04-17T13:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。