論文の概要: Blind Data Adaptation to tackle Covariate Shift in Operational Steganalysis
- arxiv url: http://arxiv.org/abs/2405.16961v1
- Date: Mon, 27 May 2024 08:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:21:29.693633
- Title: Blind Data Adaptation to tackle Covariate Shift in Operational Steganalysis
- Title(参考訳): 手術時ステガナシスにおける共変量シフトへのブラインドデータ適応
- Authors: Rony Abecidan, Vincent Itier, Jérémie Boulanger, Patrick Bas, Tomáš Pevný,
- Abstract要約: Image Steganographyにより、個人は疑念を喚起することなく、デジタル画像に違法な情報を隠すことができる。
内因性コミュニケーションのための操作画像の検出を可能にする効果的なステガナリシス法を開発することが重要である。
ステガナリシスにおける特定の目標に沿ったソースをエミュレートする新しい手法であるTADを開発した。
- 参考スコア(独自算出の注目度): 9.565324766070407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of image manipulation for unethical purposes poses significant challenges in social networks. One particularly concerning method is Image Steganography, allowing individuals to hide illegal information in digital images without arousing suspicions. Such a technique pose severe security risks, making it crucial to develop effective steganalysis methods enabling to detect manipulated images for clandestine communications. Although significant advancements have been achieved with machine learning models, a critical issue remains: the disparity between the controlled datasets used to train steganalysis models against real-world datasets of forensic practitioners, undermining severely the practical effectiveness of standardized steganalysis models. In this paper, we address this issue focusing on a realistic scenario where practitioners lack crucial information about the limited target set of images under analysis, including details about their development process and even whereas it contains manipulated images or not. By leveraging geometric alignment and distribution matching of source and target residuals, we develop TADA (Target Alignment through Data Adaptation), a novel methodology enabling to emulate sources aligned with specific targets in steganalysis, which is also relevant for highly unbalanced targets. The emulator is represented by a light convolutional network trained to align distributions of image residuals. Experimental validation demonstrates the potential of our strategy over traditional methods fighting covariate shift in steganalysis.
- Abstract(参考訳): 非倫理的な目的のための画像操作の拡散は、ソーシャルネットワークにおいて大きな課題となっている。
画像ステガノグラフィー(Image Steganography)は、個人が疑念を喚起することなく、デジタル画像に違法な情報を隠せるようにする手法である。
このような技術は、重大なセキュリティリスクを生じさせ、秘密の通信のために操作された画像を検出することができる効果的なステガナリシス法を開発することが重要である。
機械学習モデルで顕著な進歩が達成されているが、重要な問題は、ステガナリシスモデルのトレーニングに使用される制御データセットと、法医学者の現実のデータセットとの相違であり、標準化されたステガナリシスモデルの実用性を著しく損なうことである。
本稿では,対象とする画像の限られたセットに関する重要な情報がない現実的なシナリオに焦点をあてる。
ソースとターゲット残差の幾何的アライメントと分布マッチングを活用することで、ステガナリシスにおける特定のターゲットと整合したソースをエミュレートする新しい手法であるTAD(Target Alignment through Data Adaptation)を開発した。
エミュレータは、画像残像の分布を整列するように訓練された光畳み込みネットワークによって表現される。
ステガナシスの共変量変化と戦う従来の方法に対する我々の戦略の可能性を実験的に検証した。
関連論文リスト
- Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models [13.970483987621135]
コントラスト分析(CA)は、背景(BG)データセットとターゲット(TG)データセット(不健康な被験者)を区別できる画像内のパターンを識別することを目的としている。
この話題に関する最近の研究は、BGサンプルからTGサンプルを分離するパターンを教師付きで学習するために、変分オートエンコーダ(VAE)や対照的な学習戦略に依存している。
自己教師付きコントラストエンコーダを用いて、入力画像から共通パターンのみを符号化する潜時表現を学習し、トレーニング中にBGデータセットからのみサンプルを用いて学習し、データ拡張技術を用いて対象パターンの分布を近似する。
論文 参考訳(メタデータ) (2024-06-02T15:19:07Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
医用画像が公開されていないため、現代のアルゴリズムは、大量の自然画像に基づいて事前訓練されたモデルに依存するようになった。
自然画像と医療画像の間に重要なエムドメインの相違があり、AIモデルは敵の攻撃に対するエムの脆弱性を高める。
本稿では,テクスチャと色適応を伝達学習に導入する Em ドメイン同化手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T06:39:15Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
グラフニューラルネットワーク(GNN)は、さまざまな分野でますます普及している。
個人データの不正利用に関する懸念が高まっている。
近年の研究では、このような誤用から画像データを保護する効果的な方法として、知覚不能な毒殺攻撃が報告されている。
本稿では,グラフデータの不正使用に対する保護のためにGraphCloakを導入する。
論文 参考訳(メタデータ) (2023-10-11T00:50:55Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
ラベルなしMRIスキャンによる自己教師付き事前学習に基づく新たなディープラーニング学習戦略を提案する。
我々の事前学習アプローチはまず、ラベルのない画像のランダム領域に異なる歪みをランダムに適用し、次に歪みの種類と情報の損失を予測する。
異なる事前学習シナリオと微調整シナリオにおけるセグメンテーション課題に対する提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-07-17T13:28:52Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
医用画像セグメンテーションのためのニューラルネットワークのトレーニングのための逆データ拡張手法を提案する。
このモデルでは,MR画像における共通の種類のアーチファクトによって生じる強度不均一性,すなわちバイアス場をモデル化する。
このような手法により,モデルの一般化と堅牢性の向上が図られ,低データシナリオにおける大幅な改善が期待できる。
論文 参考訳(メタデータ) (2020-06-23T20:43:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。