論文の概要: Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2406.00772v2
- Date: Tue, 4 Jun 2024 08:53:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:26:39.198513
- Title: Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models
- Title(参考訳): 条件拡散モデルを用いた有意パターン検出のための教師なしコントラスト解析
- Authors: Cristiano Patrício, Carlo Alberto Barbano, Attilio Fiandrotti, Riccardo Renzulli, Marco Grangetto, Luis F. Teixeira, João C. Neves,
- Abstract要約: コントラスト分析(CA)は、背景(BG)データセットとターゲット(TG)データセット(不健康な被験者)を区別できる画像内のパターンを識別することを目的としている。
この話題に関する最近の研究は、BGサンプルからTGサンプルを分離するパターンを教師付きで学習するために、変分オートエンコーダ(VAE)や対照的な学習戦略に依存している。
自己教師付きコントラストエンコーダを用いて、入力画像から共通パターンのみを符号化する潜時表現を学習し、トレーニング中にBGデータセットからのみサンプルを用いて学習し、データ拡張技術を用いて対象パターンの分布を近似する。
- 参考スコア(独自算出の注目度): 13.970483987621135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive Analysis (CA) regards the problem of identifying patterns in images that allow distinguishing between a background (BG) dataset (i.e. healthy subjects) and a target (TG) dataset (i.e. unhealthy subjects). Recent works on this topic rely on variational autoencoders (VAE) or contrastive learning strategies to learn the patterns that separate TG samples from BG samples in a supervised manner. However, the dependency on target (unhealthy) samples can be challenging in medical scenarios due to their limited availability. Also, the blurred reconstructions of VAEs lack utility and interpretability. In this work, we redefine the CA task by employing a self-supervised contrastive encoder to learn a latent representation encoding only common patterns from input images, using samples exclusively from the BG dataset during training, and approximating the distribution of the target patterns by leveraging data augmentation techniques. Subsequently, we exploit state-of-the-art generative methods, i.e. diffusion models, conditioned on the learned latent representation to produce a realistic (healthy) version of the input image encoding solely the common patterns. Thorough validation on a facial image dataset and experiments across three brain MRI datasets demonstrate that conditioning the generative process of state-of-the-art generative methods with the latent representation from our self-supervised contrastive encoder yields improvements in the generated image quality and in the accuracy of image classification. The code is available at https://github.com/CristianoPatricio/unsupervised-contrastive-cond-diff.
- Abstract(参考訳): コントラスト分析(CA)は、背景(BG)データセット(健康な被験者)とターゲット(TG)データセット(健康な被験者)の区別を可能にする画像中のパターンを識別する問題を考察している。
この話題に関する最近の研究は、BGサンプルからTGサンプルを分離するパターンを教師付きで学習するために、変分オートエンコーダ(VAE)や対照的な学習戦略に依存している。
しかしながら、ターゲット(不健康な)サンプルへの依存は、可用性が限られているため、医学的なシナリオでは困難である可能性がある。
また、VAEのぼやけた再構築は実用性と解釈性に欠けていた。
本研究では、自己教師付きコントラストエンコーダを用いて、入力画像から共通パターンのみをコードする潜在表現を学習し、トレーニング中にBGデータセットからのみサンプルを使用してCAタスクを再定義し、データ拡張技術を用いてターゲットパターンの分布を近似する。
その後、学習した潜在表現に条件付き拡散モデルを用いて、一般的なパターンのみを符号化した入力画像のリアルな(健康な)バージョンを生成する。
顔画像データセットの粗い検証と3つの脳MRIデータセットを用いた実験により、自己監督型コントラストエンコーダの潜在表現による最先端生成法の生成過程の条件付けにより、生成された画像品質と画像分類の精度が向上することを示した。
コードはhttps://github.com/CristianoPatricio/unsupervised-contrastive-cond-diffで公開されている。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning [25.197342542821843]
動的Entity-Masked Graph Diffusion Modelによる自己管理型病理画像表現学習法であるH-MGDMを紹介する。
具体的には,予備訓練において,相補的な部分グラフを潜時拡散条件として,自己教師対象として用いることを提案する。
論文 参考訳(メタデータ) (2024-12-13T10:18:36Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
条件付き変分オートエンコーダに基づく画像階層化アーキテクチャを提案する。
我々は、連続した潜伏空間を用いて障害の連続を表現し、訓練中にクラスターを見つけ、画像/患者の成層に使用することができる。
本手法は,標準VAEに対して,分類タスクで測定されたkNN精度において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:55:31Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。