論文の概要: Graph Condensation for Open-World Graph Learning
- arxiv url: http://arxiv.org/abs/2405.17003v1
- Date: Mon, 27 May 2024 09:47:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:01:56.437652
- Title: Graph Condensation for Open-World Graph Learning
- Title(参考訳): オープンワールドグラフ学習のためのグラフ凝縮
- Authors: Xinyi Gao, Tong Chen, Wentao Zhang, Yayong Li, Xiangguo Sun, Hongzhi Yin,
- Abstract要約: グラフ凝縮(GC)は、グラフニューラルネットワーク(GNN)を効率的に訓練するための有望な加速ソリューションとして登場した。
既存のGCメソッドは、単に観測された静的グラフ分布と凝縮グラフの整合性に制限される。
しかし、現実のシナリオでは、グラフは動的で常に進化しており、新しいノードとエッジが継続的に統合されている。
グラフパターンの進化をシミュレートするために構造対応分散シフトを統合する,堅牢なGCフレームワークであるOpenGCを提案する。
- 参考スコア(独自算出の注目度): 48.38802327346445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning volume of graph data presents significant computational challenges in training graph neural networks (GNNs), critically impeding their efficiency in various applications. To tackle this challenge, graph condensation (GC) has emerged as a promising acceleration solution, focusing on the synthesis of a compact yet representative graph for efficiently training GNNs while retaining performance. Despite the potential to promote scalable use of GNNs, existing GC methods are limited to aligning the condensed graph with merely the observed static graph distribution. This limitation significantly restricts the generalization capacity of condensed graphs, particularly in adapting to dynamic distribution changes. In real-world scenarios, however, graphs are dynamic and constantly evolving, with new nodes and edges being continually integrated. Consequently, due to the limited generalization capacity of condensed graphs, applications that employ GC for efficient GNN training end up with sub-optimal GNNs when confronted with evolving graph structures and distributions in dynamic real-world situations. To overcome this issue, we propose open-world graph condensation (OpenGC), a robust GC framework that integrates structure-aware distribution shift to simulate evolving graph patterns and exploit the temporal environments for invariance condensation. This approach is designed to extract temporal invariant patterns from the original graph, thereby enhancing the generalization capabilities of the condensed graph and, subsequently, the GNNs trained on it. Extensive experiments on both real-world and synthetic evolving graphs demonstrate that OpenGC outperforms state-of-the-art (SOTA) GC methods in adapting to dynamic changes in open-world graph environments.
- Abstract(参考訳): グラフデータの急増するボリュームは、グラフニューラルネットワーク(GNN)のトレーニングにおいて重要な計算上の課題を示し、様々なアプリケーションにおいてその効率を著しく損なう。
この課題に対処するために、グラフ凝縮(GC)は、性能を維持しながら効率よくGNNを訓練するコンパクトだが代表的なグラフの合成に焦点を当て、有望な加速解として登場した。
GNNのスケーラブルな利用を促進する可能性にもかかわらず、既存のGCメソッドは、凝縮グラフと単に観察された静的グラフ分布との整合に限られている。
この制限は凝縮グラフの一般化能力を著しく制限し、特に動的分布変化に適応する。
しかし、現実のシナリオでは、グラフは動的で常に進化しており、新しいノードとエッジが継続的に統合されている。
したがって、凝縮グラフの限定的な一般化能力のため、効率的なGNNトレーニングにGCを使用するアプリケーションは、動的実世界の状況下でのグラフ構造や分布の進化に直面した場合、準最適GNNに終止符を打つことになる。
この問題を解決するために,構造対応の分散シフトを統合して,進化するグラフパターンをシミュレートし,時間的環境を利用して分散凝縮を行う,オープンワールドグラフ凝縮(OpenGC)を提案する。
このアプローチは、元のグラフから時間的不変パターンを抽出し、縮合グラフの一般化能力を高め、その後、GNNが訓練する。
実世界のグラフと合成進化グラフの両方に関する大規模な実験により、OpenGCは、オープンワールドグラフ環境の動的変化に適応して、最先端(SOTA)GCメソッドより優れていることが示された。
関連論文リスト
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
グラフ凝縮は、大規模原グラフのコンパクトで代替的なグラフを合成するための有望な解である。
本稿では、自己教師型代理タスクを取り入れたCTGC(Contrastive Graph Condensation)を導入し、元のグラフから批判的、因果的な情報を抽出する。
CTGCは、様々な下流タスクを限られたラベルで処理し、一貫して最先端のGCメソッドより優れている。
論文 参考訳(メタデータ) (2024-11-26T03:01:22Z) - RobGC: Towards Robust Graph Condensation [61.259453496191696]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の目覚ましい能力によって広く注目を集めている。
しかし,大規模グラフの普及は,その計算要求により,GNNトレーニングにとって大きな課題となる。
本稿では,GNNを効率よく学習し,性能を保ちつつ,情報的コンパクトなグラフを生成するために,GC(Graph Condensation)を提案する。
論文 参考訳(メタデータ) (2024-06-19T04:14:57Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Simple Graph Condensation [30.85754566420301]
グラフ凝縮(Graph condensation)は、グラフニューラルネットワーク(GNN)を小さな凝縮グラフにチューニングし、大規模なオリジナルグラフで使用する。
本稿では,SimGC(Simple Graph Condensation)フレームワークについて紹介する。
SimGCは既存のグラフ凝縮法に比べて最大10倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-03-22T05:04:48Z) - Disentangled Condensation for Large-scale Graphs [31.781721873508978]
グラフニューラルネットワーク(GNN)の高価なトレーニングコストを節約するための興味深いテクニックとして、グラフ凝縮が登場した。
本稿では, 凝縮過程を2段階のGNNフリーパラダイムに分解し, ノードを独立に凝縮し, エッジを生成することを提案する。
この単純で効果的なアプローチは、中規模グラフの精度に匹敵する精度で最先端の手法よりも少なくとも10倍早く達成できる。
論文 参考訳(メタデータ) (2024-01-18T09:59:00Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。