論文の概要: Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems
- arxiv url: http://arxiv.org/abs/2405.17100v1
- Date: Mon, 27 May 2024 12:18:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:32:42.533753
- Title: Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems
- Title(参考訳): Sok: 音声制御システムのセキュリティ概要と課題,今後の方向性
- Authors: Haozhe Xu, Cong Wu, Yangyang Gu, Xingcan Shang, Jing Chen, Kun He, Ruiying Du,
- Abstract要約: Voice Control Systemsをスマートデバイスに統合することで、セキュリティの重要性が強調される。
現在の研究では、VCSの脆弱性が多数発見され、ユーザのプライバシとセキュリティに重大なリスクが提示されている。
本稿では,VCSの階層的モデル構造を導入し,既存の文献を体系的に分類・分析するための新しいレンズを提供する。
我々は,その技術的原則に基づいて攻撃を分類し,その方法,目標,ベクトル,行動など,さまざまな属性を徹底的に評価する。
- 参考スコア(独自算出の注目度): 10.86045604075024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Voice Control Systems (VCS) into smart devices and their growing presence in daily life accentuate the importance of their security. Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security. However, a cohesive and systematic examination of these vulnerabilities and the corresponding solutions is still absent. This lack of comprehensive analysis presents a challenge for VCS designers in fully understanding and mitigating the security issues within these systems. Addressing this gap, our study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner. We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors. Furthermore, we consolidate and assess the defense mechanisms proposed in current research, offering actionable recommendations for enhancing VCS security. Our work makes a significant contribution by simplifying the complexity inherent in VCS security, aiding designers in effectively identifying and countering potential threats, and setting a foundation for future advancements in VCS security research.
- Abstract(参考訳): 音声制御システム(VCS)をスマートデバイスに統合し、日常生活におけるその存在感を高めることで、セキュリティの重要性が強調される。
現在の研究では、VCSの脆弱性が多数発見され、ユーザのプライバシとセキュリティに重大なリスクが提示されている。
しかしながら、これらの脆弱性とそれに対応する解決策の凝集的で体系的な検査はいまだに存在しない。
この包括的な分析の欠如は、VCSデザイナにとって、これらのシステム内のセキュリティ問題を完全に理解し緩和する上での課題である。
このギャップに対処するため,本研究では,既存の文献を体系的に分類・分析するための新たなレンズとして,VCSの階層的モデル構造を導入している。
我々は,その技術的原則に基づいて攻撃を分類し,その方法,目標,ベクトル,行動など,さまざまな属性を徹底的に評価する。
さらに,現在の研究で提案されている防衛機構を統合し,評価し,VCSのセキュリティを強化するための実用的なレコメンデーションを提供する。
我々の研究は、VCSのセキュリティに固有の複雑さを単純化し、デザイナーが潜在的な脅威を効果的に識別し対処するのを支援し、VCSのセキュリティ研究における将来の進歩の基盤を確立することで、大きな貢献をしている。
関連論文リスト
- Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Leveraging Security Observability to Strengthen Security of Digital Ecosystem Architecture [0.0]
複雑さは、デジタルエコシステムにおける可観測性とセキュリティの両方に重大な課題をもたらします。
可観測性により、組織はパフォーマンスの問題を診断し、リアルタイムで異常を検出することができる。
セキュリティは機密データの保護とサービスの整合性の確保に重点を置いている。
本稿では,デジタルエコシステムアーキテクチャにおける可観測性とセキュリティの相互関係について検討する。
論文 参考訳(メタデータ) (2024-12-07T11:17:29Z) - Building Trust: Foundations of Security, Safety and Transparency in AI [0.23301643766310373]
我々は、問題の追跡、修復、AIモデルのライフサイクルとオーナシッププロセスの明らかな欠如といった課題を強調しながら、現在のセキュリティと安全性のシナリオをレビューする。
本稿では,AIモデルの開発と運用において,より標準化されたセキュリティ,安全性,透明性を実現するための基礎的要素を提供する。
論文 参考訳(メタデータ) (2024-11-19T06:55:57Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
AIベースのサイバーセキュリティの重要な領域は、悪意のある摂動からディープニューラルネットワークを守ることに焦点を当てている。
VeriGauge ツールキットを用いて,認証されたロバスト性に関する先行研究の結果の検証を試みる。
私たちの発見は、標準化された方法論、コンテナ化、包括的なドキュメントの緊急性の必要性を浮き彫りにしています。
論文 参考訳(メタデータ) (2024-05-29T04:37:19Z) - Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs [11.853500347907826]
協力的インテリジェントトランスポーテーションシステム(C-ITS)はこの進化の最前線にある。
本稿では,C-ITSのサイバーセキュリティの研究,試験,評価を促進するために設計された,CSCE(Cybersecurity Centre of Excellence)を提案する。
論文 参考訳(メタデータ) (2023-12-22T13:42:53Z) - The Last Decade in Review: Tracing the Evolution of Safety Assurance
Cases through a Comprehensive Bibliometric Analysis [7.431812376079826]
安全保証は、自動車、航空宇宙、原子力など、様々な分野において最重要事項である。
安全保証ケースを使用することで、生成されたシステム機能の正しさを検証することができ、システム障害を防止することができる。
論文 参考訳(メタデータ) (2023-11-13T17:34:23Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。