論文の概要: Collage is the New Writing: Exploring the Fragmentation of Text and User Interfaces in AI Tools
- arxiv url: http://arxiv.org/abs/2405.17217v1
- Date: Mon, 27 May 2024 14:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:03:23.926367
- Title: Collage is the New Writing: Exploring the Fragmentation of Text and User Interfaces in AI Tools
- Title(参考訳): Collage - AIツールのテキストとユーザインターフェースの断片化を探る
- Authors: Daniel Buschek,
- Abstract要約: このエッセイでは、最近のAI記述ツールのユーザインターフェース設計を分析するための分析レンズとしてColllageを採用している。
批判的な視点は、作家が歴史的に文学的コラージュを通して表現した懸念とAI書記ツールに関するものである。
- 参考スコア(独自算出の注目度): 24.71214613787985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This essay proposes and explores the concept of Collage for the design of AI writing tools, transferred from avant-garde literature with four facets: 1) fragmenting text in writing interfaces, 2) juxtaposing voices (content vs command), 3) integrating material from multiple sources (e.g. text suggestions), and 4) shifting from manual writing to editorial and compositional decision-making, such as selecting and arranging snippets. The essay then employs Collage as an analytical lens to analyse the user interface design of recent AI writing tools, and as a constructive lens to inspire new design directions. Finally, a critical perspective relates the concerns that writers historically expressed through literary collage to AI writing tools. In a broad view, this essay explores how literary concepts can help advance design theory around AI writing tools. It encourages creators of future writing tools to engage not only with new technological possibilities, but also with past writing innovations.
- Abstract(参考訳): このエッセイは、4つの面を持つ前衛文学から移されたAI書記ツールの設計のためのコラージュの概念を提案し、探求する。
1) 文中のテキストの断片化。
2 口頭弁論(内容対命令)
3)複数のソース(例えばテキストの提案)からの資料の統合、及び
4)手書き文字からスニペットの選択・配置等の編集・構成決定へ移行すること。
このエッセイでは、コラージュを分析レンズとして使用し、最近のAI書記ツールのユーザーインターフェース設計を分析し、新しいデザインの方向性を刺激する建設レンズとして使用している。
最後に、批判的な視点は、著者が歴史的に文学的コラージュからAI書記ツールに表現した懸念に関するものである。
このエッセイは、幅広い視点で、AI記述ツールに関する設計理論を前進させる上で、文学的概念がどのように役立つかを探求する。
これは、将来の書記ツールの作成者に対して、新しい技術の可能性だけでなく、過去の書記イノベーションにも関与するよう促している。
関連論文リスト
- Towards Full Authorship with AI: Supporting Revision with AI-Generated
Views [3.109675063162349]
大きな言語モデル(LLM)は、ユーザーがプロンプトを通じてテキストを生成できるようにすることで、ツールを書く際に新しいユーザーインターフェイス(UI)パラダイムを形作っている。
このパラダイムは、ユーザからシステムへの創造的なコントロールを移行することで、書き込みプロセスにおけるユーザのオーサシップと自律性を低下させる。
テキストフォーカス(Textfocals)は,文章作成におけるユーザの役割を強調する,人間中心のアプローチを調査するためのプロトタイプである。
論文 参考訳(メタデータ) (2024-03-02T01:11:35Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping [13.023911633052482]
VISARは、著者のブレインストーミングと、執筆コンテキストにおける階層的な目標の修正を支援するために設計されたAI対応の筆記アシスタントシステムである。
テキストの同期編集とビジュアルプログラミングによって引数構造を整理し、議論の発散による説得力を高める。
制御された研究室研究により、議論的な執筆計画プロセスの促進におけるVISARの有用性と有効性が確認された。
論文 参考訳(メタデータ) (2023-04-16T15:29:03Z) - Beyond Summarization: Designing AI Support for Real-World Expository
Writing Tasks [28.702425557409516]
大規模言語モデルは、新しいAI支援書き込み支援ツールの設計と開発において、エキサイティングな新しい機会と課題をもたらした。
最近の研究は、この新技術を活用することで、創造的執筆時の構想、編集支援、要約など、多くのシナリオで文章を変換できることを示している。
実証書作成のためのAIサポートの開発には、独特でエキサイティングな研究課題があり、高い実世界への影響をもたらす可能性がある、と私たちは主張する。
論文 参考訳(メタデータ) (2023-04-05T17:47:11Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Beyond Text Generation: Supporting Writers with Continuous Automatic
Text Summaries [27.853155569154705]
本稿では,ユーザによる記述プロセスの計画,構造化,反映を支援するテキストエディタを提案する。
自動テキスト要約を用いて、連続的に更新された段落の要約をマージンアノテーションとして提供する。
論文 参考訳(メタデータ) (2022-08-19T13:09:56Z) - Suggestion Lists vs. Continuous Generation: Interaction Design for
Writing with Generative Models on Mobile Devices Affect Text Length, Wording
and Perceived Authorship [27.853155569154705]
モバイル端末上でAIで書き込むための2つのユーザインタフェースを提示し、イニシアティブとコントロールのレベルを制御する。
AIの提案では、人々は積極的に書くことは少なかったが、著者であると感じた。
どちらの設計においても、AIはテキストの長さを長くし、言葉に影響を与えていると認識された。
論文 参考訳(メタデータ) (2022-08-01T13:57:11Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
ピアレビューは、ほとんどの科学分野における出版プロセスの重要な要素である。
既存のNLP研究は個々のテキストの分析に重点を置いている。
編集補助は、しばしばテキストのペア間の相互作用をモデル化する必要がある。
論文 参考訳(メタデータ) (2022-04-22T16:39:38Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z) - Discourse Analysis for Evaluating Coherence in Video Paragraph Captions [99.37090317971312]
ビデオ段落のコヒーレンスを評価するための,新しい談話に基づく枠組みを検討中である。
ビデオのコヒーレンスに条件付き段落のコヒーレンスをモデル化する上で,ビデオの談話表現が中心となる。
実験の結果,提案手法は,ビデオ段落のコヒーレンスをベースライン法よりも有意に向上させることがわかった。
論文 参考訳(メタデータ) (2022-01-17T04:23:08Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
感情を持たない短い単純なテキストは、その文脈と共に読むときに強い感情を表現することができる。
文中の単語の相互依存を学習する文脈影響検出フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-28T05:03:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。