Synergistic Dynamical Decoupling and Circuit Design for Enhanced Algorithm Performance on Near-Term Quantum Devices
- URL: http://arxiv.org/abs/2405.17230v2
- Date: Sun, 18 Aug 2024 08:49:51 GMT
- Title: Synergistic Dynamical Decoupling and Circuit Design for Enhanced Algorithm Performance on Near-Term Quantum Devices
- Authors: Yanjun Ji, Ilia Polian,
- Abstract summary: Dynamical decoupling (DD) is a promising technique for mitigating errors in near-term quantum devices.
We analyze how hardware features and algorithm design impact the effectiveness of DD for error mitigation.
The results reveal an inverse relationship between the effectiveness of DD and the inherent performance of the algorithm.
- Score: 0.5261718469769447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical decoupling (DD) is a promising technique for mitigating errors in near-term quantum devices. However, its effectiveness depends on both hardware characteristics and algorithm implementation details. This paper explores the synergistic effects of dynamical decoupling and optimized circuit design in maximizing the performance and robustness of algorithms on near-term quantum devices. By utilizing eight IBM quantum devices, we analyze how hardware features and algorithm design impact the effectiveness of DD for error mitigation. Our analysis takes into account factors such as circuit fidelity, scheduling duration, and hardware-native gate set. We also examine the influence of algorithmic implementation details, including specific gate decompositions, DD sequences, and optimization levels. The results reveal an inverse relationship between the effectiveness of DD and the inherent performance of the algorithm. Furthermore, we emphasize the importance of gate directionality and circuit symmetry in improving performance. This study offers valuable insights for optimizing DD protocols and circuit designs, highlighting the significance of a holistic approach that leverages both hardware features and algorithm design for the high-quality and reliable execution of near-term quantum algorithms.
Related papers
- Benchmarking End-To-End Performance of AI-Based Chip Placement Algorithms [77.71341200638416]
ChiPBench is a benchmark designed to evaluate the effectiveness of AI-based chip placement algorithms.
We have gathered 20 circuits from various domains (e.g., CPU, GPU, and microcontrollers) for evaluation.
Results show that even if intermediate metric of a single-point algorithm is dominant, the final PPA results are unsatisfactory.
arXiv Detail & Related papers (2024-07-03T03:29:23Z) - Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
In this survey, we explore the feasibility of an integrated design and optimization scheme that spans from the algorithmic level to quantum hardware, combining the steps of logic circuit design and compilation optimization.
Leveraging the exceptional cognitive and learning capabilities of AI algorithms, one can reduce manual design costs, enhance the precision and efficiency of execution, and facilitate the implementation and validation of the superiority of quantum algorithms on hardware.
arXiv Detail & Related papers (2024-06-30T15:50:10Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Superconducting processor design optimization for quantum error correction performance [3.6723640056915436]
We introduce a multi-level simulation framework that spans both Hamiltonian and quantum error correction levels.
This toolset aids in design optimization, tailored to specific objectives like quantum memory performance.
We exemplify our approach through the multi-path coupling scheme of fluxonium qubits.
arXiv Detail & Related papers (2023-12-07T10:13:08Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Performance Evaluations of Noisy Approximate Quantum Fourier Arithmetic [1.1140384738063092]
We implement QFT-based integer addition and multiplications on quantum computers.
These operations are fundamental to various quantum applications.
We evaluate these implementations based on IBM's superconducting qubit architecture.
arXiv Detail & Related papers (2021-12-17T06:51:18Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.