R-ODE: Ricci Curvature Tells When You Will be Informed
- URL: http://arxiv.org/abs/2405.17282v1
- Date: Mon, 27 May 2024 15:46:52 GMT
- Title: R-ODE: Ricci Curvature Tells When You Will be Informed
- Authors: Li Sun, Jingbin Hu, Mengjie Li, Hao Peng,
- Abstract summary: Information diffusion prediction is fundamental to understand the structure and organization of the online social networks.
We propose a novel Ricci-curvature regulated Ordinary Equation (RODE) to predict the time when a target user will be informed.
Extensive experiments evaluate the personalized time prediction ability of R-ODE, and show RODE- outperforms the state-of-the-art baselines.
- Score: 20.832255496918368
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Information diffusion prediction is fundamental to understand the structure and organization of the online social networks, and plays a crucial role to blocking rumor spread, influence maximization, political propaganda, etc. So far, most existing solutions primarily predict the next user who will be informed with historical cascades, but ignore an important factor in the diffusion process - the time. Such limitation motivates us to pose the problem of the time-aware personalized information diffusion prediction for the first time, telling the time when the target user will be informed. In this paper, we address this problem from a fresh geometric perspective of Ricci curvature, and propose a novel Ricci-curvature regulated Ordinary Differential Equation (R-ODE). In the diffusion process, R-ODE considers that the inter-correlated users are organized in a dynamic system in the representation space, and the cascades give the observations sampled from the continuous realm. At each infection time, the message diffuses along the largest Ricci curvature, signifying less transportation effort. In the continuous realm, the message triggers users' movement, whose trajectory in the space is parameterized by an ODE with graph neural network. Consequently, R-ODE predicts the infection time of a target user by the movement trajectory learnt from the observations. Extensive experiments evaluate the personalized time prediction ability of R-ODE, and show R-ODE outperforms the state-of-the-art baselines.
Related papers
- A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Dynamic Graph Learning Based on Hierarchical Memory for
Origin-Destination Demand Prediction [12.72319550363076]
This paper provides a dynamic graph representation learning framework for OD demands prediction.
In particular, a hierarchical memory updater is first proposed to maintain a time-aware representation for each node.
Atemporal propagation mechanism is provided to aggregate representations of neighbor nodes along a randomtemporal route.
An objective function is designed to derive the future OD demands according to the most recent node.
arXiv Detail & Related papers (2022-05-29T07:52:35Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - STR-GODEs: Spatial-Temporal-Ridership Graph ODEs for Metro Ridership
Prediction [0.0]
We extend ODE algorithms to the graph network to learn spatial, temporal, and ridership correlations without the limitation of dividing data into equal-sized intervals on the timeline.
Ridership information and its hidden states are added to the GODE-RNN cell to reduce the error accumulation caused by long time series in prediction.
arXiv Detail & Related papers (2021-07-11T06:29:20Z) - Focus of Attention Improves Information Transfer in Visual Features [80.22965663534556]
This paper focuses on unsupervised learning for transferring visual information in a truly online setting.
The computation of the entropy terms is carried out by a temporal process which yields online estimation of the entropy terms.
In order to better structure the input probability distribution, we use a human-like focus of attention model.
arXiv Detail & Related papers (2020-06-16T15:07:25Z) - DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn
Users' Dynamic Preferences for Information Diffusion Prediction [27.15862893269242]
We propose a novel dynamic heterogeneous graph convolutional network (DyHGCN) to jointly learn the structural characteristics of the social graph and dynamic diffusion graph.
Experimental results show that DyHGCN significantly outperforms the state-of-the-art models on three public datasets.
arXiv Detail & Related papers (2020-06-09T10:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.