Coupling Light with Matter for Identifying Dominant Subnetworks
- URL: http://arxiv.org/abs/2405.17296v1
- Date: Mon, 27 May 2024 16:00:21 GMT
- Title: Coupling Light with Matter for Identifying Dominant Subnetworks
- Authors: Airat Kamaletdinov, Natalia G. Berloff,
- Abstract summary: We present a novel light-matter platform that uses complex neural networks to identify dominantworks and uncover indirect correlations within larger networks.
This approach offers significant advantages, including low energy consumption, high processing speed, and the immediate identification of co-valued and counter-regulated nodes without post-processing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel light-matter platform that uses complex-valued oscillator networks, a form of physical neural networks, to identify dominant subnetworks and uncover indirect correlations within larger networks. This approach offers significant advantages, including low energy consumption, high processing speed, and the immediate identification of co- and counter-regulated nodes without post-processing. The effectiveness of this approach is demonstrated through its application to biological networks, and we also propose its applicability to a wide range of other network types.
Related papers
- Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
Multi-network alignment is an essential prerequisite for joint learning on multiple networks.
We propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment.
Our proposed HOT achieves significant improvements over the state-of-the-art in both effectiveness and scalability.
arXiv Detail & Related papers (2023-10-06T02:35:35Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
arXiv Detail & Related papers (2021-08-15T10:13:49Z) - Scalable Power Control/Beamforming in Heterogeneous Wireless Networks
with Graph Neural Networks [6.631773993784724]
We propose a novel unsupervised learning-based framework named heterogeneous interference graph neural network (HIGNN) to handle these challenges.
HIGNN is scalable to wireless networks of growing sizes with robust performance after trained on small-sized networks.
arXiv Detail & Related papers (2021-04-12T13:36:32Z) - Learning low-rank latent mesoscale structures in networks [1.1470070927586016]
We present a new approach for describing low-rank mesoscale structures in networks.
We use several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks.
We show how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted network.
arXiv Detail & Related papers (2021-02-13T18:54:49Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
Heterogeneous information network (HIN) embedding aims to map the structure and semantic information in a HIN to distributed representations.
We propose a novel neural network method via implicitly utilizing attention and meta-paths.
We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer.
We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation.
arXiv Detail & Related papers (2020-07-06T11:09:40Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Compact Neural Representation Using Attentive Network Pruning [1.0152838128195465]
We describe a Top-Down attention mechanism that is added to a Bottom-Up feedforward network to select important connections and subsequently prune redundant ones at all parametric layers.
Our method not only introduces a novel hierarchical selection mechanism as the basis of pruning but also remains competitive with previous baseline methods in the experimental evaluation.
arXiv Detail & Related papers (2020-05-10T03:20:01Z) - A supervised active learning method for identifying critical nodes in
Wireless Sensor Network [0.27920304852537525]
We propose an active learning approach to address the computational overhead of identifying critical nodes in a wireless sensor network (WSN)
The proposed approach can overcome biasing in identifying non-critical nodes and needs much less effort in fine-tuning to adapt to the dynamic nature of WSN.
Experiments show that the proposed method has more flexibility, compared to the state-of-the-art, to be employed in large scale WSN environments.
arXiv Detail & Related papers (2020-04-19T15:48:27Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.