論文の概要: XFormParser: A Simple and Effective Multimodal Multilingual Semi-structured Form Parser
- arxiv url: http://arxiv.org/abs/2405.17336v1
- Date: Mon, 27 May 2024 16:37:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:33:59.911277
- Title: XFormParser: A Simple and Effective Multimodal Multilingual Semi-structured Form Parser
- Title(参考訳): XFormParser: 単純かつ効果的なマルチモーダル多言語半構造化ホルムパーザ
- Authors: Xianfu Cheng, Hang Zhang, Jian Yang, Xiang Li, Weixiao Zhou, Kui Wu, Fei Liu, Wei Zhang, Tao Sun, Tongliang Li, Zhoujun Li,
- Abstract要約: 本研究では, 単純だが効果的な textbfMultimodal と textbfMultilingual semi-structured textbfFORM textbfXForm フレームワークを提案する。
textbfXFormは、包括的な事前訓練された言語モデルに固定されており、革新的にエンティティ認識とリレーショナルREである。
本フレームワークは,マルチ言語およびゼロショットの両文脈において,タスク間の性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 35.69888780388425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of document AI, semi-structured form parsing plays a crucial role. This task leverages techniques from key information extraction (KIE), dealing with inputs that range from plain text to intricate modal data comprising images and structural layouts. The advent of pre-trained multimodal models has driven the extraction of key information from form documents in different formats such as PDFs and images. Nonetheless, the endeavor of form parsing is still encumbered by notable challenges like subpar capabilities in multi-lingual parsing and diminished recall in contexts rich in text and visuals. In this work, we introduce a simple but effective \textbf{M}ultimodal and \textbf{M}ultilingual semi-structured \textbf{FORM} \textbf{PARSER} (\textbf{XFormParser}), which is anchored on a comprehensive pre-trained language model and innovatively amalgamates semantic entity recognition (SER) and relation extraction (RE) into a unified framework, enhanced by a novel staged warm-up training approach that employs soft labels to significantly refine form parsing accuracy without amplifying inference overhead. Furthermore, we have developed a groundbreaking benchmark dataset, named InDFormBench, catering specifically to the parsing requirements of multilingual forms in various industrial contexts. Through rigorous testing on established multilingual benchmarks and InDFormBench, XFormParser has demonstrated its unparalleled efficacy, notably surpassing the state-of-the-art (SOTA) models in RE tasks within language-specific setups by achieving an F1 score improvement of up to 1.79\%. Our framework exhibits exceptionally improved performance across tasks in both multi-language and zero-shot contexts when compared to existing SOTA benchmarks. The code is publicly available at https://github.com/zhbuaa0/layoutlmft.
- Abstract(参考訳): ドキュメントAIの分野では、半構造化フォーム解析が重要な役割を果たす。
このタスクはキー情報抽出(KIE)の技術を活用し、プレーンテキストから画像と構造的レイアウトを含む複雑なモーダルデータまでの入力を扱う。
事前訓練されたマルチモーダルモデルの出現は、PDFや画像などの異なるフォーマットのフォーム文書からキー情報を抽出するきっかけとなった。
それでも、フォームパーシングの取り組みは、多言語構文解析におけるサブパー機能や、テキストやビジュアルに富んだコンテキストでのリコールの減少といった、注目すべき課題によって、いまだに悩まされている。
本研究では,包括的事前学習言語モデルと革新的にアマルガメート・セマンティック・エンティティ認識 (SER) と関係抽出 (RE) を統一したフレームワークに固定した,単純だが効果的な \textbf{M}ultimodal と \textbf{M}ultilingual semi-structured \textbf{FORM} \textbf{PARSER} (\textbf{XFormParser}) を導入する。
さらに, 各種産業文脈における多言語形式の解析要求に特化して, InDFormBench というグラウンドブレーキングベンチマークデータセットを開発した。
確立したマルチリンガルベンチマークとInDFormBenchの厳格なテストを通じて、XFormParserは、F1スコアの改善を最大1.79倍にすることで、言語固有の設定内でのREタスクにおける最先端(SOTA)モデルを上回る、非並列の有効性を実証した。
本フレームワークは,既存のSOTAベンチマークと比較して,多言語・ゼロショットの両文脈におけるタスク間の性能を著しく向上させる。
コードはhttps://github.com/zhbuaa0/layoutlmft.comで公開されている。
関連論文リスト
- jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images [5.587329786636647]
Contrastive Language-Image Pretraining (CLIP) は、画像とテキストを共有埋め込み空間で整列する非常に効果的な方法である。
CLIPモデルはテキストのみのタスクに苦しむことが多く、特殊なテキストモデルに比べてパフォーマンスが劣る。
本研究では,従来のモデルであるjina-clip-v1に基づいて,マルチタスク,マルチステージのコントラスト学習を多言語で実現した改良フレームワークを提案する。
結果として得られたモデルであるjina-clip-v2は、テキストのみのタスクとマルチモーダルタスクで前バージョンより優れており、マルチリンガルサポート、複雑なビジュアルドキュメントの理解の向上、効率の向上などが追加されている。
論文 参考訳(メタデータ) (2024-12-11T22:28:12Z) - MACT: Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing [4.536003573070846]
意味表現解析モデルのための言語間学習戦略を導入する。
事前訓練された言語モデルにエンコードされた言語間のアライメントを利用する。
実験では、英語、ドイツ語、イタリア語、オランダ語におけるDRS節とグラフ解析の大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-06-03T07:02:57Z) - OmniParser: A Unified Framework for Text Spotting, Key Information Extraction and Table Recognition [79.852642726105]
多様なシナリオにまたがって視覚的なテキストを解析するための統一パラダイムを提案する。
具体的には,3つの視覚的なテキスト解析タスクを同時に処理できるOmniというユニバーサルモデルを提案する。
オムニでは、全てのタスクが統一エンコーダ・デコーダアーキテクチャ、統一目的点条件テキスト生成、統一入力表現を共有している。
論文 参考訳(メタデータ) (2024-03-28T03:51:14Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - PARAGRAPH2GRAPH: A GNN-based framework for layout paragraph analysis [6.155943751502232]
本稿では,言語に依存しないグラフニューラルネットワーク(GNN)モデルを提案する。
我々のモデルは産業アプリケーション、特に多言語シナリオに適しています。
論文 参考訳(メタデータ) (2023-04-24T03:54:48Z) - Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding [58.70423899829642]
Pix2Structは、純粋に視覚的な言語理解のための事前訓練された画像-テキストモデルである。
4つの領域にまたがる9つのタスクのうち6つのタスクにおいて、1つの事前訓練されたモデルが最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-07T06:42:06Z) - XDoc: Unified Pre-training for Cross-Format Document Understanding [84.63416346227176]
XDocは、単一のモデルで異なるドキュメントフォーマットを扱う、統合された事前訓練されたモデルである。
XDocは、トレーニング済みの個々のモデルと比較して、さまざまなダウンストリームタスクで同等またはそれ以上のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-10-06T12:07:18Z) - Translate & Fill: Improving Zero-Shot Multilingual Semantic Parsing with
Synthetic Data [2.225882303328135]
多言語セマンティックパーシングタスクのための銀のトレーニングデータを生成するための新しいTranslate-and-Fill(TaF)手法を提案する。
3つの多言語意味解析データセットの実験結果は、TaFによるデータ拡張が類似システムと競合する精度に達することを示している。
論文 参考訳(メタデータ) (2021-09-09T14:51:11Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical
Encoder for Long-Form Document Matching [28.190001111358438]
長文文書マッチングのためのシームズ多層変換器を用いたSMITHを提案する。
我々のモデルには、より長いテキスト入力に自己注意モデルを適用するためのいくつかの革新が含まれている。
われわれはウィキペディアベースのベンチマークデータセット、コード、トレーニング済みのチェックポイントをオープンソース化し、長文文書マッチングの今後の研究を加速する。
論文 参考訳(メタデータ) (2020-04-26T07:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。