BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction
- URL: http://arxiv.org/abs/2405.17372v1
- Date: Mon, 27 May 2024 17:28:25 GMT
- Title: BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction
- Authors: Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue,
- Abstract summary: Behavior Generative Pre-trained Transformers (BehaviorGPT) is a decoder-only, autoregressive architecture designed to simulate the sequential motion of multiple agents.
Next-Patch Prediction Paradigm (NP3) enables models to reason at the patch level of trajectories and capture long-range spatial-temporal interactions.
BehaviorGPT ranks first across several metrics on the Sim Agents Benchmark, demonstrating its exceptional performance in multi-agent and agent-map interactions.
- Score: 22.254486248785614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating realistic interactions among traffic agents is crucial for efficiently validating the safety of autonomous driving systems. Existing leading simulators primarily use an encoder-decoder structure to encode the historical trajectories for future simulation. However, such a paradigm complicates the model architecture, and the manual separation of history and future trajectories leads to low data utilization. To address these challenges, we propose Behavior Generative Pre-trained Transformers (BehaviorGPT), a decoder-only, autoregressive architecture designed to simulate the sequential motion of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future," treating each time step as the "current" one, resulting in a simpler, more parameter- and data-efficient design that scales seamlessly with data and computation. Additionally, we introduce the Next-Patch Prediction Paradigm (NP3), which enables models to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. BehaviorGPT ranks first across several metrics on the Waymo Sim Agents Benchmark, demonstrating its exceptional performance in multi-agent and agent-map interactions. We outperformed state-of-the-art models with a realism score of 0.741 and improved the minADE metric to 1.540, with an approximately 91.6% reduction in model parameters.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - SMART: Scalable Multi-agent Real-time Motion Generation via Next-token Prediction [4.318757942343036]
We introduce a novel autonomous driving motion generation paradigm that models vectorized map and agent trajectory data into discrete sequence tokens.
These tokens are then processed through a decoder-only transformer architecture to train for the next token prediction task.
We have collected over 1 billion motion tokens from multiple datasets, validating the model's scalability.
arXiv Detail & Related papers (2024-05-24T16:17:35Z) - MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving [15.965681867350215]
This paper introduces a trajectory prediction model tailored for autonomous driving.
It harnesses historical trajectory data combined with a novel geometric dynamic graph-based behavior-aware module.
It achieves computational efficiency and reduced parameter overhead.
arXiv Detail & Related papers (2024-05-02T13:13:52Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
We propose a novel CNN-based spatial-temporal graph framework GraphCNT to support more efficient and accurate trajectory predictions.
In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window.
Our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
arXiv Detail & Related papers (2020-03-16T12:56:12Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.