Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions
- URL: http://arxiv.org/abs/2405.17465v2
- Date: Tue, 18 Mar 2025 17:32:09 GMT
- Title: Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions
- Authors: Aashu Katharria, Kanchan Rajwar, Millie Pant, Juan D. Velásquez, Václav Snášel, Kusum Deep,
- Abstract summary: Review focuses on how machine learning (ML) techniques, combined with multi-source data fusion, enhance precision agriculture by improving predictive accuracy and decision-making.<n>This review bridges the gap between AI research and agricultural applications, offering a roadmap for researchers, industry professionals, and policymakers to harness information fusion and ML for advancing precision agriculture.
- Score: 6.060623947643556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) is a rapidly evolving technology with expanding applications across various fields. This paper presents a comprehensive survey of recent ML applications in agriculture for sustainability and efficiency. Existing reviews mainly focus on narrow subdomains or lack a fusion-driven perspectives. This study provides a combined analysis of ML applications in agriculture, structured around five key objectives: (i) Analyzing ML techniques across pre-harvesting, harvesting, and post-harvesting phases. (ii) Demonstrating how ML can be used with agricultural data and data fusion. (iii) Conducting a bibliometric and statistical analysis to reveal research trends and activity. (iv) Investigating real-world case studies of leading artificial intelligence (AI)-driven agricultural companies that use different types of multisensors and multisource data. (v) Compiling publicly available datasets to support ML model training. Going beyond existing previous reviews, this review focuses on how machine learning (ML) techniques, combined with multi-source data fusion (integrating remote sensing, IoT, and climate analytics), enhance precision agriculture by improving predictive accuracy and decision-making. Case studies and statistical insights illustrate the evolving landscape of AI driven smart farming, while future research directions also discusses challenges associated with data fusion for heterogeneous datasets. This review bridges the gap between AI research and agricultural applications, offering a roadmap for researchers, industry professionals, and policymakers to harness information fusion and ML for advancing precision agriculture.
Related papers
- Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making [32.62816270192696]
Modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development.
To address these challenges, this study proposes an innovative textbfMultimodal textbfAgricultural textbfAgent textbfArchitecture (textbfMA3)
This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation.
arXiv Detail & Related papers (2025-04-07T07:32:41Z) - A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis [5.006697347461899]
We present the crop disease domain multimodal dataset, a pioneering resource designed to advance the field of agricultural research.
The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge.
We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis.
arXiv Detail & Related papers (2025-03-10T06:37:42Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.
General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.
Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Towards Human-Guided, Data-Centric LLM Co-Pilots [53.35493881390917]
CliMB-DC is a human-guided, data-centric framework for machine learning co-pilots.
It combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing.
We show how CliMB-DC can transform uncurated datasets into ML-ready formats.
arXiv Detail & Related papers (2025-01-17T17:51:22Z) - Enhancing Agricultural Machinery Management through Advanced LLM Integration [0.7366405857677226]
The integration of artificial intelligence into agricultural practices has the potential to revolutionize efficiency and sustainability in farming.
This paper introduces a novel approach that leverages large language models (LLMs), particularly GPT-4, to enhance decision-making processes in agricultural machinery management.
arXiv Detail & Related papers (2024-07-30T06:49:55Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
The integration of remote sensing and machine learning in agriculture is transforming the industry.
This paper reviews relevant articles that have used RS, ML, cloud computing, and IoT in crop yield prediction.
arXiv Detail & Related papers (2023-06-07T16:13:16Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - AGI for Agriculture [30.785325834651644]
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education.
This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure.
arXiv Detail & Related papers (2023-04-12T19:39:49Z) - Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with
AI [1.9992810351494297]
This article presents the AI technology for predicting micro-climate conditions on the farm.
This publication is the fifth in the E-agriculture in Action series, launched in 2016 and jointly produced by FAO and ITU.
It aims to raise awareness about existing AI applications in agriculture and to inspire stakeholders to develop and replicate the new ones.
arXiv Detail & Related papers (2023-03-04T02:29:52Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Polymer Informatics: Current Status and Critical Next Steps [1.3238373064156097]
Surrogate models are trained on available polymer data for instant property prediction.
Data-driven strategies to tackle unique challenges resulting from the extraordinary chemical and physical diversity of polymers at small and large scales are being explored.
Methods to solve inverse problems, wherein polymer recommendations are made using advanced AI algorithms that meet application targets, are being investigated.
arXiv Detail & Related papers (2020-11-01T14:17:22Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.