Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making
- URL: http://arxiv.org/abs/2504.04789v1
- Date: Mon, 07 Apr 2025 07:32:41 GMT
- Title: Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making
- Authors: Zhuoning Xu, Jian Xu, Mingqing Zhang, Peijie Wang, Chao Deng, Cheng-Lin Liu,
- Abstract summary: Modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development.<n>To address these challenges, this study proposes an innovative textbfMultimodal textbfAgricultural textbfAgent textbfArchitecture (textbfMA3)<n>This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation.
- Score: 32.62816270192696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.
Related papers
- A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis [5.006697347461899]
We present the crop disease domain multimodal dataset, a pioneering resource designed to advance the field of agricultural research.<n>The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge.<n>We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis.
arXiv Detail & Related papers (2025-03-10T06:37:42Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
We construct the first multimodal instruction-following dataset in the agricultural domain.<n>This dataset covers over 221 types of pests and diseases with approximately 400,000 data entries.<n>We propose a knowledge-infused training method to develop Agri-LLaVA, an agricultural multimodal conversation system.
arXiv Detail & Related papers (2024-12-03T04:34:23Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications.
To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet.
arXiv Detail & Related papers (2024-06-24T15:55:49Z) - Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions [6.060623947643556]
Review focuses on how machine learning (ML) techniques, combined with multi-source data fusion, enhance precision agriculture by improving predictive accuracy and decision-making.<n>This review bridges the gap between AI research and agricultural applications, offering a roadmap for researchers, industry professionals, and policymakers to harness information fusion and ML for advancing precision agriculture.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
Grasslands are known for their high biodiversity and ability to provide multiple ecosystem services.
Challenges in automating the identification of indicator plants are key obstacles to large-scale grassland monitoring.
This paper delves into the latter two challenges, with a specific focus on transfer learning and XAI approaches to grassland monitoring.
arXiv Detail & Related papers (2023-12-13T10:17:48Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
Service robots need a real-time perception system that understands their surroundings and identifies their targets in the wild.
Existing methods, however, often fall short in generalizing to new crops and environmental conditions.
We propose a novel approach to enhance domain generalization using knowledge distillation.
arXiv Detail & Related papers (2023-04-03T14:28:29Z) - Data Warehouse and Decision Support on Integrated Crop Big Data [0.0]
We designed and implemented a continental level agricultural data warehouse (ADW)
ADW is characterised by its (1) flexible schema; (2) data integration from real agricultural multi datasets; (3) data science and business intelligent support; (4) high performance; (5) high storage; (6) security; (7) governance and monitoring; (8) consistency, availability and partition tolerant; (9) cloud compatibility.
arXiv Detail & Related papers (2020-03-10T00:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.