論文の概要: Advancing Medical Image Segmentation with Mini-Net: A Lightweight Solution Tailored for Efficient Segmentation of Medical Images
- arxiv url: http://arxiv.org/abs/2405.17520v4
- Date: Sat, 21 Sep 2024 03:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 02:07:29.263695
- Title: Advancing Medical Image Segmentation with Mini-Net: A Lightweight Solution Tailored for Efficient Segmentation of Medical Images
- Title(参考訳): Mini-Netによる医用画像分割の促進:医用画像の効率的な分別を目的とした軽量化
- Authors: Syed Javed, Tariq M. Khan, Abdul Qayyum, Hamid Alinejad-Rokny, Arcot Sowmya, Imran Razzak,
- Abstract要約: Mini-Netは医療画像用に設計された軽量セグメンテーションネットワークである。
パラメータが38,000未満のMini-Netは、高周波数と低周波数の両方を効率的にキャプチャする。
DRIVE, STARE, ISIC-2016, ISIC-2018, MoNuSegなど,様々なデータセット上でMini-Netを評価する。
- 参考スコア(独自算出の注目度): 18.48562660373185
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate segmentation of anatomical structures and abnormalities in medical images is crucial for computer-aided diagnosis and analysis. While deep learning techniques excel at this task, their computational demands pose challenges. Additionally, some cutting-edge segmentation methods, though effective for general object segmentation, may not be optimised for medical images. To address these issues, we propose Mini-Net, a lightweight segmentation network specifically designed for medical images. With fewer than 38,000 parameters, Mini-Net efficiently captures both high- and low-frequency features, enabling real-time applications in various medical imaging scenarios. We evaluate Mini-Net on various datasets, including DRIVE, STARE, ISIC-2016, ISIC-2018, and MoNuSeg, demonstrating its robustness and good performance compared to state-of-the-art methods.
- Abstract(参考訳): 医用画像における解剖学的構造と異常の正確なセグメンテーションは,コンピュータによる診断・解析に不可欠である。
このタスクではディープラーニングの技術が優れていますが、その計算要求は課題を引き起こします。
また, 一般的な物体分割には有効であるが, 医用画像には最適でない部分分割法もある。
これらの課題に対処するために,医用画像に特化して設計された軽量セグメンテーションネットワークであるMini-Netを提案する。
パラメータが38,000未満のMini-Netは、高周波数と低周波数の両方の機能を効率的にキャプチャし、様々な医療画像シナリオにおけるリアルタイムのアプリケーションを可能にする。
DRIVE, STARE, ISIC-2016, ISIC-2018, MoNuSegなどの各種データセット上でMini-Netを評価し, 最先端手法と比較して, その堅牢性と優れた性能を示す。
関連論文リスト
- Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models [17.461510586128874]
本稿では,DINOv2 と Segment Anything Model 2 を併用して,画像の検索を行う手法を提案する。
我々のアプローチでは、DINOv2の機能をクエリとして使用し、制限付きアノテートデータから類似したサンプルを検索し、それをメモリバンクにエンコードする。
論文 参考訳(メタデータ) (2024-08-16T15:48:07Z) - A hybrid approach for improving U-Net variants in medical image
segmentation [0.0]
医学的イメージを様々なセグメントや興味のある領域に分割する技術は、医学的イメージセグメンテーションとして知られている。
生成されたセグメント画像は、診断、手術計画、治療評価など、さまざまな用途に利用することができる。
本研究の目的は,深層的に分離可能な畳み込みを用いたネットワークパラメータ要求の低減である。
論文 参考訳(メタデータ) (2023-07-31T07:43:45Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - LDMRes-Net: Enabling Efficient Medical Image Segmentation on IoT and
Edge Platforms [9.626726110488386]
本稿では,IoTおよびエッジプラットフォーム上での医用画像のセグメンテーションに適した,軽量なデュアルマルチスケール残差ブロック型ニューラルネットワークを提案する。
LDMRes-Netは、非常に少ない学習可能なパラメータ(0.072M)で制限を克服し、リソース制約のあるデバイスに非常に適している。
論文 参考訳(メタデータ) (2023-06-09T10:34:18Z) - MKIS-Net: A Light-Weight Multi-Kernel Network for Medical Image
Segmentation [7.587725015524997]
マルチカーネル画像分割網(MKIS-Net)を提案する。
MKIS-Netは、少数のトレーニング可能なパラメータを持つ軽量アーキテクチャである。
網膜血管のセグメンテーション,皮膚病変のセグメンテーション,胸部X線セグメンテーションなどにおけるMKIS-Netの有効性について検討した。
論文 参考訳(メタデータ) (2022-10-15T02:46:28Z) - Segmenting Medical Instruments in Minimally Invasive Surgeries using
AttentionMask [66.63753229115983]
我々は,オブジェクト提案生成システムであるAttentionMaskに適応し,将来的な提案を選択するための専用の後処理を提案する。
ROBUST-MIS Challenge 2019の結果から,適応型 AttentionMask システムは最先端のパフォーマンスを実現するための強力な基盤であることがわかった。
論文 参考訳(メタデータ) (2022-03-21T21:37:56Z) - CaraNet: Context Axial Reverse Attention Network for Segmentation of
Small Medical Objects [0.0]
本稿では,小さなオブジェクトのセグメンテーション性能を改善するために,コンテキスト軸予約注意ネットワーク(CaraNet)を提案する。
我々のCaraNetは、Diceのセグメンテーションの精度を最上位で達成していますが、小さな医療オブジェクトのセグメンテーションにおいて、明らかなアドバンテージも示しています。
論文 参考訳(メタデータ) (2021-08-16T22:48:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
医療画像中の小物体の正確なセグメンテーションを予測するために, カスケード型マルチスケール畳み込みを用いた多次元アテンションセグメンテーションモデルを提案する。
提案手法は, KiTS19, Decathlon-10 の Pancreas CT, MICCAI 2018 LiTS Challenge の3つのデータセットを用いて評価した。
論文 参考訳(メタデータ) (2020-11-15T13:54:22Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。