論文の概要: LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
- arxiv url: http://arxiv.org/abs/2405.17604v3
- Date: Tue, 19 Aug 2025 19:14:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.055125
- Title: LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
- Title(参考訳): LoRA-XS:極小パラメータによる低ランク適応
- Authors: Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor,
- Abstract要約: 理論的導出に基づく新しい微調整法であるLoRA-XSを紹介する。
LoRA-XSは、小さくてトレーニング可能な重量行列を組み込むことで、トレーニング可能なパラメータを劇的に削減する。
モジュールごとにひとつのパラメータから任意の大きな値にスケールでき、任意のストレージや計算の制約に適応できる。
- 参考スコア(独自算出の注目度): 11.23006032094776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growth of large language models underscores the need for parameter-efficient fine-tuning. Despite its popularity, LoRA encounters storage and computational challenges when deploying multiple task- or user-specific modules. To address this, we introduce LoRA-XS, a novel fine-tuning method backed by a theoretical derivation. LoRA-XS drastically reduces trainable parameters by incorporating a small, trainable weight matrix between frozen low-rank matrices derived from the Singular Value Decomposition of pre-trained weights. This design enables LoRA-XS to reduce storage requirements by over 100x in 7B models compared to LoRA. Additionally, unlike other methods, LoRA-XS imposes no lower bound on trainable parameters - it can scale from a single parameter per module to arbitrarily large values, adapting to any storage or computational constraint. Evaluations on GLUE, GSM8K, MATH, and commonsense reasoning benchmarks across different model scales reveal that LoRA-XS consistently outperforms or matches LoRA and VeRA in accuracy, offering unmatched parameter efficiency. Our ablation studies highlight the significance of singular vectors in transformer weights, establishing LoRA-XS as a powerful, storage-efficient solution for scaling and personalizing large language models.
- Abstract(参考訳): 大きな言語モデルの成長は、パラメータ効率の良い微調整の必要性を浮き彫りにする。
LoRAは人気があるにもかかわらず、複数のタスクやユーザ固有のモジュールをデプロイする際に、ストレージと計算上の問題に直面している。
そこで我々は,理論的導出を背景とした新しい微調整法であるLoRA-XSを紹介する。
LoRA-XSは、トレーニング済み重量の特異値分解から導かれる冷凍低ランク行列の間に、小さなトレーニング可能な重量行列を組み込むことにより、トレーニング可能なパラメータを劇的に削減する。
この設計により、LoRA-XSはLoRAと比較して7Bモデルの100倍以上のストレージ要求を削減できる。
加えて、他のメソッドとは異なり、LoRA-XSはトレーニング可能なパラメータに低いバウンダリを課さない。モジュール毎にひとつのパラメータから任意の大きな値にスケールでき、ストレージや計算の制約に適応できる。
GLUE, GSM8K, MATH, and commonsense reasoning benchmarks on different model scales showed that LoRA-XS consistent outforms or match LoRA and VeRA in accuracy, offered unmatched parameter efficiency。
我々のアブレーション研究は、変圧器重みにおける特異ベクトルの重要性を強調し、大規模言語モデルのスケーリングとパーソナライズのための強力なストレージ効率のソリューションとしてLoRA-XSを確立する。
関連論文リスト
- Uni-LoRA: One Vector is All You Need [13.938834666101679]
Low-Rank Adaptation (LoRA) は、大規模言語モデルのための事実上のパラメータ効率の微調整(PEFT)手法となっている。
本稿では,これらの LoRA 変種が用いたパラメータ空間削減戦略を統一的な枠組みで定式化できることを示す。
Uni-LoRAの統一的なビューの下では、LLM全体のLoRAパラメータを再構築するためには、単一のトレーニング可能なベクトルしか必要としない。
論文 参考訳(メタデータ) (2025-06-01T03:00:09Z) - DenseLoRA: Dense Low-Rank Adaptation of Large Language Models [14.133511131962786]
低ランク適応 (LoRA) は大規模言語モデル (LLM) に適応するための効率的なアプローチとして開発されている。
パラメータ効率を高めつつ,LoRAよりも優れた性能を実現する新しい手法であるDense Low-Rank Adaptation (DenseLoRA)を導入する。
我々はDenseLoRAを様々なベンチマークで評価し、LLaMA3-8B上のトレーニング可能なパラメータの0.70%とLoRAの80.8%の精度と比較して、トレーニング可能なパラメータの0.01%で83.8%の精度を達成することを示した。
論文 参考訳(メタデータ) (2025-05-27T08:19:07Z) - LoRA-Mini : Adaptation Matrices Decomposition and Selective Training [2.0670689746336]
Low-Rank Adaptation (LoRA)は、トレーニング可能なパラメータの数を減らし、パラメータ効率の良い微調整を可能にする、有望なソリューションとして登場した。
低ランク行列を4つに分割することでパラメータ効率を向上させるLoRAを最適化したLoRA-Miniを提案する。
このアプローチは、標準のLoRAに匹敵するパフォーマンスレベルを維持しながら、トレーニング可能なパラメータの数に対して、標準のLoRAと比較して最大20倍の削減を実現している。
論文 参考訳(メタデータ) (2024-11-24T12:21:14Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
我々は,Low-Rank Adaptation (LoRA) とフルファインタニングによる事前学習モデルについて検討する。
特異値分解が全く異なる構造を示すLoRAおよび完全微調整収量行列が得られた。
我々は、LoRAが完全な微調整を忘れてはならないという発見を拡張し、その忘れ物は侵入者次元に大きく局所化されていることを発見した。
論文 参考訳(メタデータ) (2024-10-28T17:14:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape [52.98187034726091]
フルパラメータ空間の平坦領域に位置する低ランク適応を同定することを目的としたFlat-LoRAを提案する。
また、Flat-LoRAはドメイン内とドメイン外の両方の一般化を改善していることを示す。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - NoRA: Nested Low-Rank Adaptation for Efficient Fine-Tuning Large Models [27.757883818520217]
Nested Low-Rank Adaptation (NoRA) はパラメータ効率の良い微調整のための新しいアプローチである。
外部のLoRA重みを凍結し、内部のLoRA設計を使用することで、NORAはコンパクトなパラメータ空間で正確なタスク適応を可能にする。
論文 参考訳(メタデータ) (2024-08-18T12:18:56Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks [10.266224162377371]
ローランク適応(LoRA)とその派生型は、かなりのストレージと送信コストを発生させる。
我々は,行列次元,モジュール,レイヤ間の低ランク分解の障壁を断ち切る「分割共有」パラダイムを導入する。
VB-LoRAは、最先端PEFT法と比較して、同等または優れた性能を維持しながら、極端なパラメータ効率を達成する。
論文 参考訳(メタデータ) (2024-05-24T03:24:34Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - S-LoRA: Serving Thousands of Concurrent LoRA Adapters [59.490751234925206]
パラメータ効率のよい微調整法であるLoRA(Lo-Rank Adaptation)は、ベースモデルを複数のタスクに適応させるためによく用いられる。
本稿では,多数のLoRAアダプタのスケーラブルな提供を目的としたシステムであるS-LoRAを提案する。
論文 参考訳(メタデータ) (2023-11-06T17:26:17Z) - NOLA: Compressing LoRA using Linear Combination of Random Basis [22.76088132446952]
我々は、ロラに存在するランク1の下界を克服するNOLAを導入する。
NOLAは、ランク1のLoRAと比較してパラメータ数がはるかに少ないLoRAモデルと同様に、最高の圧縮LoRAをアーカイブできる。
論文 参考訳(メタデータ) (2023-10-04T03:30:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。