論文の概要: Alignment is Key for Applying Diffusion Models to Retrosynthesis
- arxiv url: http://arxiv.org/abs/2405.17656v1
- Date: Mon, 27 May 2024 20:57:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-29 23:11:29.081681
- Title: Alignment is Key for Applying Diffusion Models to Retrosynthesis
- Title(参考訳): 拡散モデルを用いた再合成のためのアライメント
- Authors: Najwa Laabid, Severi Rissanen, Markus Heinonen, Arno Solin, Vikas Garg,
- Abstract要約: 拡散モデル(diffusion model)は、保温後の条件付けと、生成時の速度品質のトレードオフを可能にする、有望なモデリングアプローチである。
数学的には、置換同変デノイザはグラフ拡散モデルの表現性を著しく制限し、したがってそれらの逆合成への適応性を示す。
我々の新しいデノイザは、USPTO-50k上のテンプレートフリーおよびテンプレートベースのメソッドで最高1$の精度(54.7$%)を達成する。
- 参考スコア(独自算出の注目度): 24.912841472542322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrosynthesis, the task of identifying precursors for a given molecule, can be naturally framed as a conditional graph generation task. Diffusion models are a particularly promising modelling approach, enabling post-hoc conditioning and trading off quality for speed during generation. We show mathematically that permutation equivariant denoisers severely limit the expressiveness of graph diffusion models and thus their adaptation to retrosynthesis. To address this limitation, we relax the equivariance requirement such that it only applies to aligned permutations of the conditioning and the generated graphs obtained through atom mapping. Our new denoiser achieves the highest top-$1$ accuracy ($54.7$\%) across template-free and template-based methods on USPTO-50k. We also demonstrate the ability for flexible post-training conditioning and good sample quality with small diffusion step counts, highlighting the potential for interactive applications and additional controls for multi-step planning.
- Abstract(参考訳): 与えられた分子の前駆体を特定するタスクである再合成は、条件付きグラフ生成タスクとして自然にフレーム化することができる。
拡散モデル(diffusion model)は特に有望なモデリング手法であり、時間後条件付けと生成時の速度のトレードオフを可能にする。
数学的には、置換同変デノイザはグラフ拡散モデルの表現性を著しく制限し、したがってそれらの逆合成への適応性を示す。
この制限に対処するため、同値要件を緩和し、条件付けのアライメントと、原子マッピングによって得られた生成されたグラフにのみ適用する。
我々の新しいデノイザは、USPTO-50k上のテンプレートフリーおよびテンプレートベースのメソッドで最高1$の精度(54.7$\%)を達成する。
また,対話型アプリケーションの可能性を強調し,多段階計画のための追加の制御を行うことにより,学習後条件のフレキシブル化と,分散ステップ数によるサンプル品質の向上を実証する。
関連論文リスト
- Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models [13.053266613831447]
ノードレベルのタスクのためのグラフ基盤モデルを第一原理から設計するためのレシピを提案する。
本研究の基盤となる重要な要素は,グラフ基盤モデルが尊重すべき対称性を体系的に調査することである。
我々は29の実世界のノード分類データセットに関する広範な実験を通して、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2025-06-17T08:05:08Z) - Learning-Order Autoregressive Models with Application to Molecular Graph Generation [52.44913282062524]
本稿では,データから逐次推定される確率的順序付けを用いて高次元データを生成するARMの変種を紹介する。
提案手法は,画像およびグラフ生成において有意義な自己回帰順序を学習できることを実験的に実証した。
論文 参考訳(メタデータ) (2025-03-07T23:24:24Z) - Graph Counterfactual Explainable AI via Latent Space Traversal [4.337339380445765]
反実的な説明は、分配の代替入力の「アレスト」を見つけることによって予測を説明することを目的としている。
本稿では, 識別可能なブラックボックスグラフ分類器に対して, 反実的説明を生成する手法を提案する。
我々は3つのグラフデータセットに対するアプローチを実証的に検証し、我々のモデルはベースラインよりも一貫してハイパフォーマンスで堅牢であることを示した。
論文 参考訳(メタデータ) (2025-01-15T15:04:10Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Chemistry-Inspired Diffusion with Non-Differentiable Guidance [10.573577157257564]
拡散モデルの最近の進歩は、新しい分子の条件生成に顕著な可能性を示している。
本研究では, 量子化学の領域知識を微分不可能なオラクルとして活用し, 非条件拡散モデルを導出する手法を提案する。
オラクルはニューラルネットワークに頼る代わりに、推定勾配の形で正確なガイダンスを提供し、量子化学によって指定された条件分布から拡散過程をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-10-09T03:10:21Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
任意の時間ステップ蒸留拡散モデルを直接微調整できるPSOアルゴリズムを提案する。
PSOは、現在の時間ステップ蒸留モデルからサンプリングされた追加の参照画像を導入し、トレーニング画像と参照画像との相対的な近縁率を増大させる。
PSOは、オフラインとオンラインのペアワイズ画像データの両方を用いて、蒸留モデルを直接人間の好ましくない世代に適応させることができることを示す。
論文 参考訳(メタデータ) (2024-10-04T07:05:16Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD)は、グラフデータの多様な性質を扱うために特別に設計された生成モデルである。
本稿では, 臨界グラフトポロジを安定化させることにより, 生成グラフの現実性を高める変調手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - Generating Graphs via Spectral Diffusion [48.70458395826864]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGGSDを提案する。
合成グラフと実世界のグラフの両方に関する広範な実験は、最先端の代替品に対する我々のモデルの強みを実証している。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - Graph Neural Networks with a Distribution of Parametrized Graphs [27.40566674759208]
複数のグラフをパラメータ化して生成するために潜在変数を導入する。
予測最大化フレームワークにおいて,ネットワークパラメータの最大推定値を得る。
論文 参考訳(メタデータ) (2023-10-25T06:38:24Z) - Graph Mixup with Soft Alignments [49.61520432554505]
本研究では,画像上での使用に成功しているミキサアップによるグラフデータの増大について検討する。
ソフトアライメントによるグラフ分類のための簡易かつ効果的な混合手法であるS-Mixupを提案する。
論文 参考訳(メタデータ) (2023-06-11T22:04:28Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Modular Flows: Differential Molecular Generation [18.41106104201439]
フローは、エンコーディングプロセスを反転させることで、分子を効果的に生成することができる。
既存のフローモデルでは、アーチファクトのデクタンス化や特定のノード/エッジの順序付けが必要となる。
我々はノードODEとグラフPDEのシステムに基づく連続正規化E(3)-同変フローを開発する。
我々のモデルは、メッセージパッシング時間ネットワークとしてキャストすることができ、その結果、密度推定と分子生成のタスクにおいて最上位のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2022-10-12T09:08:35Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。