論文の概要: LoRA-Switch: Boosting the Efficiency of Dynamic LLM Adapters via System-Algorithm Co-design
- arxiv url: http://arxiv.org/abs/2405.17741v1
- Date: Tue, 28 May 2024 01:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 22:41:57.578873
- Title: LoRA-Switch: Boosting the Efficiency of Dynamic LLM Adapters via System-Algorithm Co-design
- Title(参考訳): LoRA-Switch:System-Algorithm共設計による動的LLMアダプタの効率向上
- Authors: Rui Kong, Qiyang Li, Xinyu Fang, Qingtian Feng, Qingfeng He, Yazhu Dong, Weijun Wang, Yuanchun Li, Linghe Kong, Yunxin Liu,
- Abstract要約: 動的アダプタのきめ細かいコストを分析し、断片化されたカーネル呼び出しが根本原因であることを確かめる。
レイヤワイドまたはブロックワイドな動的ルーティングを採用する既存の動的構造とは異なり、LoRA-Switchはトークンワイドなルーティング機構を導入している。
効率を上げるために、このスイッチングは最適化されたカーネルで実装され、同時にすべてのLoRAアダプタの操作を融合させる。
- 参考スコア(独自算出の注目度): 23.874726096958135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent literature has found that an effective method to customize or further improve large language models (LLMs) is to add dynamic adapters, such as low-rank adapters (LoRA) with Mixture-of-Experts (MoE) structures. Though such dynamic adapters incur modest computational complexity, they surprisingly lead to huge inference latency overhead, slowing down the decoding speed by 2.5+ times. In this paper, we analyze the fine-grained costs of the dynamic adapters and find that the fragmented CUDA kernel calls are the root cause. Therefore, we propose LoRA-Switch, a system-algorithm co-designed architecture for efficient dynamic adapters. Unlike most existing dynamic structures that adopt layer-wise or block-wise dynamic routing, LoRA-Switch introduces a token-wise routing mechanism. It switches the LoRA adapters and weights for each token and merges them into the backbone for inference. For efficiency, this switching is implemented with an optimized CUDA kernel, which fuses the merging operations for all LoRA adapters at once. Based on experiments with popular open-source LLMs on common benchmarks, our approach has demonstrated similar accuracy improvement as existing dynamic adapters, while reducing the decoding latency by more than 2.4 times.
- Abstract(参考訳): 近年の文献では、大規模言語モデル(LLM)をカスタマイズまたは改善するための効果的な方法は、低ランクアダプタ(LoRA)やMixture-of-Experts(MoE)構造などの動的アダプタを追加することである。
このような動的アダプタは、控えめな計算複雑性を発生させるが、驚くほど大きな推論遅延のオーバーヘッドを招き、復号速度を2.5倍も遅くする。
本稿では,動的アダプタの細粒度コストを解析し,断片化したCUDAカーネルコールが根本原因であることを示す。
そこで本稿では,効率的な動的アダプタのためのシステムアルゴリズムであるLoRA-Switchを提案する。
レイヤワイドまたはブロックワイドな動的ルーティングを採用する既存の動的構造とは異なり、LoRA-Switchはトークンワイドなルーティング機構を導入している。
トークンごとにLoRAアダプタとウェイトを切り替え、推論のためにそれらをバックボーンにマージする。
効率を上げるために、このスイッチングは最適化されたCUDAカーネルで実装され、同時に全てのLoRAアダプタのマージ操作を融合させる。
提案手法は,従来の動的アダプタと同様の精度向上を実現し,復号遅延を2.4回以上削減した。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs [5.735411578779657]
Low-Rank Adaptation (LoRA) はパラメータ効率のよい微調整法で、ベースLSMを複数の下流タスクに適応させるのに使われる。
LoRAプラットフォームにより、開発者は複数のモデルを微調整し、さまざまなドメイン固有のアプリケーションを同時に開発できる。
既存のモデル並列化スキームは、複数のLoRAタスクをトレーニングする際に、高い通信オーバーヘッドと非効率なGPU利用に悩まされる。
論文 参考訳(メタデータ) (2023-12-05T05:38:38Z) - S-LoRA: Serving Thousands of Concurrent LoRA Adapters [59.490751234925206]
パラメータ効率のよい微調整法であるLoRA(Lo-Rank Adaptation)は、ベースモデルを複数のタスクに適応させるためによく用いられる。
本稿では,多数のLoRAアダプタのスケーラブルな提供を目的としたシステムであるS-LoRAを提案する。
論文 参考訳(メタデータ) (2023-11-06T17:26:17Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNetは動的ネットワークの理論的および実用的な効率ギャップを橋渡しするフレームワークである。
3つの主要な動的パラダイム - 適応型計算、動的層スキップ、動的チャネルスキップ - を統合している。
これにより、V100,3090やTX2 GPUのようなプラットフォーム上で、ResNetのようなモデルの遅延を50%以上削減できる。
論文 参考訳(メタデータ) (2023-08-30T10:57:41Z) - Dynamically Reconfigurable Variable-precision Sparse-Dense Matrix
Acceleration in Tensorflow Lite [0.0]
FADES(Fused Architecture for Dense and Sparse matrices)と呼ばれる動的に再構成可能なハードウェアアクセラレータを提案する。
FADES設計は、データフローモデルを使用して複雑さと並列性をトレードオフする複数の設定オプションを提供し、結果の読み込み、計算、スケール、書き込みの4つのステージを作成する。
また,ソフトウェア最適化のNEON RUYライブラリ上では,単一コアで最大20倍の高速化を実現している。
論文 参考訳(メタデータ) (2023-04-17T12:31:50Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
本稿ではトランスフォーマーアクセラレーションのためのコヒーレントシーケンス長適応型アルゴリズム-ハードウェア共設計を提案する。
ハードウェアフレンドリーなスパースアテンション演算子と長編ハードウェアリソーススケジューリングアルゴリズムを開発した。
我々の設計は、非常に小さな精度の損失があり、CPUやGPUの実装と比較して80.2$times$と2.6$times$ Speedupがある。
論文 参考訳(メタデータ) (2022-08-07T05:48:38Z) - Dynamic Slimmable Network [105.74546828182834]
ダイナミックスリム化システム「ダイナミックスリム化ネットワーク(DS-Net)」を開発。
ds-netは,提案するダブルヘッド動的ゲートによる動的推論機能を備えている。
静的圧縮法と最先端の静的および動的モデル圧縮法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-03-24T15:25:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。