ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling
- URL: http://arxiv.org/abs/2405.17743v4
- Date: Sun, 05 Jan 2025 14:35:49 GMT
- Title: ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling
- Authors: Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou Wang, Zizhuo Wang,
- Abstract summary: We introduce OR-Instruct, a semi-automated data synthesis framework for optimization modeling.
We also introduce IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems.
- Score: 15.67321902882617
- License:
- Abstract: Optimization modeling plays a critical role in the application of Operations Research (OR) tools to address real-world problems, yet they pose challenges and require extensive expertise from OR experts. With the advent of large language models (LLMs), new opportunities have emerged to streamline and automate such task. However, current research predominantly relies on closed-source LLMs such as GPT-4, along with extensive prompt engineering techniques. This reliance stems from the scarcity of high-quality training datasets for optimization modeling, resulting in elevated costs, prolonged processing times, and privacy concerns. To address these challenges, our work is the first to propose a viable path for training open-source LLMs that are capable of optimization modeling and developing solver codes, eventually leading to a superior ability for automating optimization modeling and solving. Particularly, we introduce OR-Instruct, a semi-automated data synthesis framework for optimization modeling that enables customizable enhancements for specific scenarios or model types. We also introduce IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems. We train several 7B-scale open-source LLMs using synthesized data (dubbed ORLMs{https://github.com/Cardinal-Operations/ORLM}), which exhibit significantly enhanced optimization modeling capabilities, achieving state-of-the-art performance across the NL4OPT, MAMO, and IndustryOR benchmarks. Additionally, our experiments highlight the potential of scaling law and reinforcement learning to further enhance the performance of ORLMs. The workflows and human-machine interaction paradigms of ORLMs in practical industrial applications are also discussed in the paper.
Related papers
- LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks.
Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs like GPT, LLaMA, and Mistral.
arXiv Detail & Related papers (2024-12-17T06:48:24Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
In this study, we present a novel approach that integrates pre-trained LLMs with a FEM module.
The FEM module evaluates each design and provides essential feedback, guiding the LLMs to continuously learn, plan, generate, and optimize designs without the need for domain-specific training.
Our results reveal that these LLM-based agents can successfully generate truss designs that comply with natural language specifications with a success rate of up to 90%, which varies according to the applied constraints.
arXiv Detail & Related papers (2024-04-26T16:41:24Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.