論文の概要: FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
- arxiv url: http://arxiv.org/abs/2405.18087v1
- Date: Tue, 28 May 2024 11:47:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 18:48:53.626951
- Title: FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
- Title(参考訳): FlowSDF: 距離変換を用いた医用画像分割のためのフローマッチング
- Authors: Lea Bogensperger, Dominik Narnhofer, Alexander Falk, Konrad Schindler, Thomas Pock,
- Abstract要約: 署名された距離関数(SDF)を表す画像誘導型条件付きフローマッチングフレームワークであるFlowSDFを提案する。
SDFの条件分布の確率パスに直接関係するベクトル場を学習することにより、セグメント化マスクの分布から正確にサンプリングすることができる。
- 参考スコア(独自算出の注目度): 60.195642571004804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its utility in medical image segmentation applications.
- Abstract(参考訳): 医用画像のセグメンテーションは、医用画像の関心領域を正確に識別し、分離する能力に依存する重要な課題である。
これにより、生成的アプローチは、それぞれの構造に依存するセグメンテーションマスクの統計的性質を捉えることができる。
本研究では,署名された距離関数(SDF)を表す画像誘導型条件付きフローマッチングフレームワークであるFlowSDFを提案する。
SDFを利用する利点は、二元マスクに比べて、より自然な歪みである。
SDFの条件分布の確率パスに直接関係するベクトル場を学習することにより、セグメント化マスクの分布から正確にサンプリングすることができ、統計量の評価が可能となる。
したがって、この確率的表現は、分散によって表される不確実性写像の生成を可能にし、さらなる解析と予測ロバスト性の向上に役立つ。
提案手法の核・腺分節データセットに対する競合性能を質的,定量的に検証し,医用画像分節法における有用性を強調した。
関連論文リスト
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
我々は、追加の訓練をすることなく、きめ細かなセグメンテーションマップを生成できる画像セグメンタを開発した。
低次元特徴写像の空間的位置と画像画素間の意味的対応を同定する。
大規模な実験では、生成したセグメンテーションマップがよく説明され、画像の細部を捉えることが示されている。
論文 参考訳(メタデータ) (2024-01-22T07:34:06Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation [19.036821997968552]
医用画像分割のための条件付きベルヌーイ拡散モデル(BerDiff)を提案する。
我々のBerDiffは、最近発表された最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2023-04-10T07:21:38Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
Denoising Diffusion Probabilistic Models に基づくセマンティックセグメンテーションのための条件カテゴリー拡散モデル(CCDM)を提案する。
以上の結果から,CCDMはLIDC上での最先端性能を実現し,従来のセグメンテーションデータセットであるCityscapesのベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T19:16:47Z) - Score-Based Generative Models for Medical Image Segmentation using
Signed Distance Functions [11.137438870686026]
符号付き距離関数(SDF)を表す条件付きスコアベース生成モデリングフレームワークを提案する。
SDFを利用する利点は、二元マスクに比べて、より自然な歪みである。
論文 参考訳(メタデータ) (2023-03-10T14:55:35Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
拡散モデルに基づく新しいセマンティックセグメンテーション手法を提案する。
トレーニングとサンプリングの手法を改良することにより,拡散モデルが医用画像の病変分割を行うことができることを示す。
最先端セグメンテーションモデルと比較して,本手法は良好なセグメンテーション結果と有意義な不確実性マップが得られる。
論文 参考訳(メタデータ) (2021-12-06T16:28:15Z) - Uncertainty quantification in medical image segmentation with
normalizing flows [0.9176056742068811]
条件付き正規化フロー(cFlow)に基づく新しい条件付き生成モデルを提案する。
基本的な考え方は、エンコーダの後にcFlow変換ステップを導入することにより、cVAEの表現性を高めることである。
これにより、遅延後部分布の近似が向上し、モデルがよりリッチなセグメンテーションのバリエーションを捉えることができる。
論文 参考訳(メタデータ) (2020-06-04T07:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。