Simulating infinite-dimensional nonlinear diffusion bridges
- URL: http://arxiv.org/abs/2405.18353v2
- Date: Thu, 6 Jun 2024 14:32:38 GMT
- Title: Simulating infinite-dimensional nonlinear diffusion bridges
- Authors: Gefan Yang, Elizabeth Louise Baker, Michael L. Severinsen, Christy Anna Hipsley, Stefan Sommer,
- Abstract summary: The diffusion bridge is a type of diffusion process that conditions on hitting a specific state within a finite time period.
We present a solution by merging score-matching techniques with operator learning, enabling a direct approach to score-matching for the infinite-dimensional bridge.
- Score: 1.747623282473278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion bridge is a type of diffusion process that conditions on hitting a specific state within a finite time period. It has broad applications in fields such as Bayesian inference, financial mathematics, control theory, and shape analysis. However, simulating the diffusion bridge for natural data can be challenging due to both the intractability of the drift term and continuous representations of the data. Although several methods are available to simulate finite-dimensional diffusion bridges, infinite-dimensional cases remain unresolved. In the paper, we present a solution to this problem by merging score-matching techniques with operator learning, enabling a direct approach to score-matching for the infinite-dimensional bridge. We construct the score to be discretization invariant, which is natural given the underlying spatially continuous process. We conduct a series of experiments, ranging from synthetic examples with closed-form solutions to the stochastic nonlinear evolution of real-world biological shape data, and our method demonstrates high efficacy, particularly due to its ability to adapt to any resolution without extra training.
Related papers
- Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
We introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states.
GDB employs an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states.
We show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states.
arXiv Detail & Related papers (2024-10-31T17:59:53Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Stochastic Optimal Control for Diffusion Bridges in Function Spaces [13.544676987441441]
We present a theory of optimal control tailored to infinite-dimensional spaces.
We show how Doob's $h$-transform can be derived from the SOC perspective and expanded to infinite dimensions.
We propose two applications: learning bridges between two infinite-dimensional distributions and generative models for sampling from an infinite-dimensional distribution.
arXiv Detail & Related papers (2024-05-31T05:42:47Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
Reflected diffusion models have become the go-to method for large-scale generative models in real-world applications.
We introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored generating data within diverse bounded domains.
Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks.
arXiv Detail & Related papers (2024-01-06T14:39:58Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
arXiv Detail & Related papers (2023-02-20T18:00:38Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - Simulating Diffusion Bridges with Score Matching [17.492131261495523]
We first show that the time-reversed diffusion bridge process can be simulated if one can time-reverse the unconditioned diffusion process.
We then consider another iteration of our proposed methodology to approximate the Doob's $h$-transform defining the diffusion bridge process.
arXiv Detail & Related papers (2021-11-14T05:18:31Z) - Rectangular Flows for Manifold Learning [38.63646804834534]
Normalizing flows are invertible neural networks with tractable change-of-volume terms.
Data of interest is typically assumed to live in some (often unknown) low-dimensional manifold embedded in high-dimensional ambient space.
We propose two methods to tractably the gradient of this term with respect to the parameters of the model.
arXiv Detail & Related papers (2021-06-02T18:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.