論文の概要: Asymmetrical estimator for training grey-box deep photonic neural networks
- arxiv url: http://arxiv.org/abs/2405.18458v1
- Date: Tue, 28 May 2024 17:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:22:47.094546
- Title: Asymmetrical estimator for training grey-box deep photonic neural networks
- Title(参考訳): グレーボックス深部フォトニックニューラルネットワークのトレーニングのための非対称推定器
- Authors: Yizhi Wang, Minjia Chen, Chunhui Yao, Jie Ma, Ting Yan, Richard Penty, Qixiang Cheng,
- Abstract要約: 非対称トレーニング(AT)法は、PNN構造を灰色の箱として扱う。
我々は、未校正フォトニック集積回路(PIC)により実装されたディープグレーボックスPNNのAT法を実験的に実証した。
また、MNIST, fashion-MNIST, Kuzushiji-MNISTなど、さまざまなデータセットに対するAT over BPの連続的な性能向上も紹介した。
- 参考スコア(独自算出の注目度): 10.709758849326061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical neural networks (PNNs) are emerging paradigms for neural network acceleration due to their high-bandwidth, in-propagation analogue processing. Despite the advantages of PNN for inference, training remains a challenge. The imperfect information of the physical transformation means the failure of conventional gradient-based updates from backpropagation (BP). Here, we present the asymmetrical training (AT) method, which treats the PNN structure as a grey box. AT performs training while only knowing the last layer output and neuron topological connectivity of a deep neural network structure, not requiring information about the physical control-transformation mapping. We experimentally demonstrated the AT method on deep grey-box PNNs implemented by uncalibrated photonic integrated circuits (PICs), improving the classification accuracy of Iris flower and modified MNIST hand-written digits from random guessing to near theoretical maximum. We also showcased the consistently enhanced performance of AT over BP for different datasets, including MNIST, fashion-MNIST, and Kuzushiji-MNIST. The AT method demonstrated successful training with minimal hardware overhead and reduced computational overhead, serving as a robust light-weight training alternative to fully explore the advantages of physical computation.
- Abstract(参考訳): 物理ニューラルネットワーク(PNN)は、その高帯域幅、伝搬内アナログ処理のため、ニューラルネットワークアクセラレーションの新たなパラダイムである。
推論に対するPNNのアドバンテージにもかかわらず、トレーニングは依然として課題である。
物理変換の不完全な情報は、バックプロパゲーション(BP)からの従来の勾配に基づく更新の失敗を意味する。
本稿では、PNN構造をグレーボックスとして扱う非対称トレーニング(AT)法を提案する。
ATは、物理的な制御-変換マッピングに関する情報を必要としない、深層ニューラルネットワーク構造の最後の層出力とニューロントポロジカル接続のみを知りながら、トレーニングを実行する。
我々は、未校正フォトニック集積回路(PIC)により実装された深層グレーボックスPNNに対してAT法を実験的に実証し、アイリスフラワーの分類精度を改善し、乱数推定からほぼ理論的最大値への修正MNIST手書き桁を修正した。
また、MNIST, fashion-MNIST, Kuzushiji-MNISTなど、さまざまなデータセットに対するAT over BPの連続的な性能向上も紹介した。
AT法は、ハードウェアのオーバーヘッドを最小限に抑え、計算のオーバーヘッドを減らし、物理計算の利点を十分に探求するための頑丈な軽量な訓練として成功した。
関連論文リスト
- Dual adaptive training of photonic neural networks [30.86507809437016]
フォトニックニューラルネットワーク(PNN)は、低レイテンシ、高エネルギー効率、高並列性を特徴とする電子の代わりに光子を用いて計算する。
既存のトレーニングアプローチでは、大規模PNNにおける体系的エラーの広範な蓄積には対処できない。
そこで本研究では,PNNモデルが実質的な系統的誤りに適応できるように,DAT(Dual Adaptive Training)を提案する。
論文 参考訳(メタデータ) (2022-12-09T05:03:45Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
本稿では、従来のランダムなニューロンやシナプスのドロップアウトを、通常のオンラインの行ベースもしくはタイルベースのドロップアウトパターンに置き換える近似ランダムドロップアウトを提案する。
次に,SGDに基づく探索アルゴリズムを開発し,行ベースあるいはタイルベースのドロップアウトパターンの分布を生成し,潜在的な精度損失を補う。
また,入力特徴図をその感度に基づいて動的にドロップアウトし,前向きおよび後向きのトレーニングアクセラレーションを実現するための感度対応ドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:32:03Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training [2.5025363034899732]
本稿では,SGDアルゴリズムを単純な計算要素に分割することで,ベースラインDNNアクセラレータ(推論のみ)にトレーニング能力を付加する手法を提案する。
DNNトレーニングのための軽量加速器であるTaxoNNを提案する。
実験の結果,TaxoNNは実精度よりも平均0.97%,誤分類率が高いことがわかった。
論文 参考訳(メタデータ) (2020-10-11T09:04:19Z) - DIET-SNN: Direct Input Encoding With Leakage and Threshold Optimization
in Deep Spiking Neural Networks [8.746046482977434]
DIET-SNNは、膜漏れと発射閾値を最適化するために勾配降下で訓練された低深さスパイクネットワークである。
我々は,VGGおよびResNetアーキテクチャ上のCIFARおよびImageNetデータセットから画像分類タスクのDIET-SNNを評価する。
我々は、ImageNetデータセット上の5つのタイムステップ(推論レイテンシ)でトップ1の精度を69%達成し、同等の標準ANNよりも12倍少ない計算エネルギーを実現した。
論文 参考訳(メタデータ) (2020-08-09T05:07:17Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。