論文の概要: A Dynamical Systems Approach to Bots and Online Political Communication
- arxiv url: http://arxiv.org/abs/2405.18652v1
- Date: Tue, 28 May 2024 23:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:23:36.507686
- Title: A Dynamical Systems Approach to Bots and Online Political Communication
- Title(参考訳): ボットとオンライン政治コミュニケーションへの動的システムアプローチ
- Authors: Beril Bulat, Martin Hilbert,
- Abstract要約: ボットはデジタル世界でますます普及し、民主的なプロセスを形作る上で積極的な役割を担ってきた。
本研究は、Twitter上でのオンライン政治討論の力学を形作る政治ボットの役割を検討するために、動的システム理論からの情報理論的アプローチを採用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bots have become increasingly prevalent in the digital sphere and have taken up a proactive role in shaping democratic processes. While previous studies have focused on their influence at the individual level, their potential macro-level impact on communication dynamics is still little understood. This study adopts an information theoretic approach from dynamical systems theory to examine the role of political bots shaping the dynamics of an online political discussion on Twitter. We quantify the components of this dynamic process in terms of its complexity, predictability, and the remaining uncertainty. Our findings suggest that bot activity is associated with increased complexity and uncertainty in the structural dynamics of online political communication. This work serves as a showcase for the use of information-theoretic measures from dynamical systems theory in modeling human-bot dynamics as a computational process that unfolds over time.
- Abstract(参考訳): ボットはデジタル世界でますます普及し、民主的なプロセスを形作る上で積極的な役割を担ってきた。
これまでの研究では、個々のレベルでの影響に焦点が当てられていたが、通信力学に対するマクロレベルの潜在的な影響は、まだほとんど理解されていない。
本研究は、Twitter上でのオンライン政治討論の力学を形作る政治ボットの役割を検討するために、動的システム理論からの情報理論的アプローチを採用する。
我々は、この動的プロセスのコンポーネントを、その複雑さ、予測可能性、および残りの不確実性の観点から定量化する。
本研究は, ボット活動が, オンライン政治コミュニケーションの構造力学における複雑性と不確実性に関連していることを示唆している。
この研究は、時間とともに展開する計算プロセスとして人間のボット力学をモデル化する際に、力学系理論からの情報理論測度を使用するためのショーケースとして機能する。
関連論文リスト
- An Introduction to Cognidynamics [11.337163242503166]
textitCognidynamicsは、時間とともに課される最適な目的によって駆動される認知システムのダイナミクスである。
我々は,エネルギー散逸の重要な役割とその注意機構と意識行動の焦点との関係を示す。
論文 参考訳(メタデータ) (2024-08-18T05:40:07Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
本研究は,様々な力学系における盆地の複雑さと予測不可能性を特徴づけることの課題に対処する。
主な焦点は、この分野における畳み込みニューラルネットワーク(CNN)の効率性を示すことである。
論文 参考訳(メタデータ) (2023-09-27T15:41:12Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Reactive and Predictive Differentiable Controllers for
Switching Linear Dynamical Models [7.653542219337937]
専門家による実証から複合ダイナミクス行動を学習するためのフレームワークを提示する。
システムダイナミクスの近接近似としてスイッチング条件にエンコードされた接点を持つスイッチング線形ダイナミクスモデルを学ぶ。
次に、データ効率のよい制御学習のための微分可能なポリシークラスとして離散時間LQRを使用し、制御戦略を開発する。
論文 参考訳(メタデータ) (2021-03-26T04:40:24Z) - LQResNet: A Deep Neural Network Architecture for Learning Dynamic
Processes [9.36739413306697]
データ駆動型アプローチ、すなわちオペレータ推論フレームワークは、動的プロセスをモデル化する。
演算子推論と特定のディープニューラルネットワークアプローチを組み合わせることで、システムの未知の非線形ダイナミクスを推定することを提案する。
論文 参考訳(メタデータ) (2021-03-03T08:19:43Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。