論文の概要: CtrlA: Adaptive Retrieval-Augmented Generation via Probe-Guided Control
- arxiv url: http://arxiv.org/abs/2405.18727v1
- Date: Wed, 29 May 2024 03:17:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:58:09.546399
- Title: CtrlA: Adaptive Retrieval-Augmented Generation via Probe-Guided Control
- Title(参考訳): CtrlA: プローブ誘導制御による適応型検索拡張生成
- Authors: Huanshuo Liu, Hao Zhang, Zhijiang Guo, Kuicai Dong, Xiangyang Li, Yi Quan Lee, Cong Zhang, Yong Liu,
- Abstract要約: 大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
CtrlAと呼ばれる効果的なプローブ誘導適応RAGフレームワークを導入することで、LCMの内部状態を探索し、そのような問題を緩和する試みを初めて提示する。
- 参考スコア(独自算出の注目度): 25.149619999722248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) has emerged as a promising solution for mitigating hallucinations of large language models (LLMs) with retrieved external knowledge. Adaptive RAG enhances this approach by dynamically assessing the retrieval necessity, aiming to balance external and internal knowledge usage. However, existing adaptive RAG methods primarily realize retrieval on demand by relying on superficially verbalize-based or probability-based feedback of LLMs, or directly fine-tuning LLMs via carefully crafted datasets, resulting in unreliable retrieval necessity decisions, heavy extra costs, and sub-optimal response generation. We present the first attempts to delve into the internal states of LLMs to mitigate such issues by introducing an effective probe-guided adaptive RAG framework, termed CtrlA. Specifically, CtrlA employs an honesty probe to regulate the LLM's behavior by manipulating its representations for increased honesty, and a confidence probe to monitor the internal states of LLM and assess confidence levels, determining the retrieval necessity during generation. Experiments show that CtrlA is superior to existing adaptive RAG methods on a diverse set of tasks, the honesty control can effectively make LLMs more honest and confidence monitoring is proven to be a promising indicator of retrieval trigger. Our codes are available at https://github.com/HSLiu-Initial/CtrlA.git.
- Abstract(参考訳): 大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
Adaptive RAGは、検索の必要性を動的に評価し、外部知識と内部知識のバランスをとることによって、このアプローチを強化する。
しかし,既存の適応RAG法は,LLMの言語的,あるいは確率的フィードバックに頼って,要求に基づく検索を主に実現し,慎重に構築したデータセットを直接微調整することで,信頼性の低い検索要求決定,高コスト化,および準最適応答生成を実現している。
CtrlAと呼ばれる効果的なプローブ誘導適応RAGフレームワークを導入することで、LCMの内部状態を探索し、そのような問題を緩和する試みを初めて提示する。
具体的には、CtrlAは、LLMの内部状態を監視し、信頼度を評価するための信頼プローブと、LLMの表現を操作することによってLCMの振舞いを調節する。
実験により、CtrlAは様々なタスクにおいて既存の適応RAG法よりも優れていることが示され、正直な制御によりLLMを効果的に誠実にすることができ、信頼性監視が検索トリガの有望な指標であることが証明された。
私たちのコードはhttps://github.com/HSLiu-Initial/CtrlA.git.comで公開されています。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant [23.366991558162695]
大規模言語モデルは「幻覚」として知られる事実的に誤った情報を生成する
これらの課題に対処するため、我々はAssistRAG(AssistRAG)を用いた検索生成支援システムを提案する。
このアシスタントは、ツールの使用、アクションの実行、メモリ構築、プラン仕様を通じて、メモリと知識を管理する。
論文 参考訳(メタデータ) (2024-11-11T09:03:52Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generationは、大規模言語モデルからテキスト生成の信頼性を向上させる手段として考えられている。
本研究では,プロンプトに短い接頭辞を挿入しても,実際の正解から遠く離れたアウトプットを生成することを発見した。
グラディエントガイドプロンプト摂動法(Gradient Guided Prompt Perturbation)と呼ばれる新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2024-02-11T12:25:41Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Intuitive or Dependent? Investigating LLMs' Behavior Style to
Conflicting Prompts [9.399159332152013]
本研究では,Large Language Models (LLM) の動作を,内部記憶と競合するプロンプトに直面する場合の挙動について検討する。
これにより、LLMの意思決定機構を理解し、検索強化生成(RAG)のような現実世界のアプリケーションにも役立つ。
論文 参考訳(メタデータ) (2023-09-29T17:26:03Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。