論文の概要: Spatiotemporal Forecasting in Climate Data Using EOFs and Machine Learning Models: A Case Study in Chile
- arxiv url: http://arxiv.org/abs/2502.17495v1
- Date: Fri, 21 Feb 2025 01:34:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:33.656749
- Title: Spatiotemporal Forecasting in Climate Data Using EOFs and Machine Learning Models: A Case Study in Chile
- Title(参考訳): EOFと機械学習モデルを用いた気候データの時空間予測 : チリを事例として
- Authors: Mauricio Herrera, Francisca Kleisinger, Andrés Wilsón,
- Abstract要約: 本研究は、時系列予測のための機械学習(ML)手法と確立された統計的手法を統合する、革新的で効率的なハイブリッド手法を用いる。
この手法はチリの領域をカバーする気候データグリッドに適用される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Effective resource management and environmental planning in regions with high climatic variability, such as Chile, demand advanced predictive tools. This study addresses this challenge by employing an innovative and computationally efficient hybrid methodology that integrates machine learning (ML) methods for time series forecasting with established statistical techniques. The spatiotemporal data undergo decomposition using time-dependent Empirical Orthogonal Functions (EOFs), denoted as \(\phi_{k}(t)\), and their corresponding spatial coefficients, \(\alpha_{k}(s)\), to reduce dimensionality. Wavelet analysis provides high-resolution time and frequency information from the \(\phi_{k}(t)\) functions, while neural networks forecast these functions within a medium-range horizon \(h\). By utilizing various ML models, particularly a Wavelet - ANN hybrid model, we forecast \(\phi_{k}(t+h)\) up to a time horizon \(h\), and subsequently reconstruct the spatiotemporal data using these extended EOFs. This methodology is applied to a grid of climate data covering the territory of Chile. It transitions from a high-dimensional multivariate spatiotemporal data forecasting problem to a low-dimensional univariate forecasting problem. Additionally, cluster analysis with Dynamic Time Warping for defining similarities between rainfall time series, along with spatial coherence and predictability assessments, has been instrumental in identifying geographic areas where model performance is enhanced. This approach also elucidates the reasons behind poor forecast performance in regions or clusters with low spatial coherence and predictability. By utilizing cluster medoids, the forecasting process becomes more practical and efficient. This compound approach significantly reduces computational complexity while generating forecasts of reasonable accuracy and utility.
- Abstract(参考訳): チリのような気候変動の高い地域では、効果的な資源管理と環境計画が、高度な予測ツールを必要としている。
本研究は、時系列予測のための機械学習(ML)手法と確立された統計的手法を統合する、革新的で計算効率のよいハイブリッド手法を用いて、この問題に対処する。
時間依存的経験的直交関数(EOFs)を用いた時空間データの分解
(t)\)とその対応する空間係数 \(\alpha_{k}
(s) 次元を減少させる。
ウェーブレット解析は \(\phi_{k} からの高分解能時間と周波数情報を提供する
(t)\ 関数は、ニューラルネットワークが中距離地平線 \(h\) 内でこれらの関数を予測するのに対してである。
各種MLモデル,特にウェーブレット-ANNハイブリッドモデルを利用することで,時間水平線(h)まで(\phi_{k}(t+h)\)を予測し,これらの拡張EOFを用いて時空間データを再構成する。
この手法はチリの領域をカバーする気候データグリッドに適用される。
高次元多変量時空間データ予測問題から低次元単変量予測問題へ遷移する。
また,降雨時系列間の類似性を定義するための動的時間ワープを用いたクラスタ解析や,空間的コヒーレンスと予測可能性評価は,モデル性能が向上した地理的領域の同定に有効である。
このアプローチはまた、空間コヒーレンスと予測可能性の低い領域やクラスタにおける予測性能の低下の原因を解明する。
クラスターメドイドを利用することで、予測プロセスはより実用的で効率的になる。
この複雑なアプローチは、妥当な精度と有用性の予測を生成しながら、計算の複雑さを著しく低減する。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Deep Convolutional Architectures for Extrapolative Forecast in
Time-dependent Flow Problems [0.0]
深層学習技術は、対流に支配された問題に対するシステムの力学をモデル化するために用いられる。
これらのモデルは、PDEから得られた連続した時間ステップに対する高忠実度ベクトル解のシーケンスとして入力される。
ディープオートエンコーダネットワークのような非侵襲的な低次モデリング技術を用いて高忠実度スナップショットを圧縮する。
論文 参考訳(メタデータ) (2022-09-18T03:45:56Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。