論文の概要: Proactive Load-Shaping Strategies with Privacy-Cost Trade-offs in Residential Households based on Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.18888v1
- Date: Wed, 29 May 2024 08:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:59:30.307742
- Title: Proactive Load-Shaping Strategies with Privacy-Cost Trade-offs in Residential Households based on Deep Reinforcement Learning
- Title(参考訳): 深層強化学習に基づく住宅におけるプライバシ・コストのトレードオフを伴う積極的負荷形成戦略
- Authors: Ruichang Zhang, Youcheng Sun, Mustafa A. Mustafa,
- Abstract要約: 本稿では,ユーザプライバシ保護のための深層強化学習に基づくロードシェイピングアルゴリズム(PLS-DQN)を提案する。
我々は,提案アルゴリズムを非侵入的負荷監視敵に対して評価する。
- 参考スコア(独自算出の注目度): 7.808916974942399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart meters play a crucial role in enhancing energy management and efficiency, but they raise significant privacy concerns by potentially revealing detailed user behaviors through energy consumption patterns. Recent scholarly efforts have focused on developing battery-aided load-shaping techniques to protect user privacy while balancing costs. This paper proposes a novel deep reinforcement learning-based load-shaping algorithm (PLS-DQN) designed to protect user privacy by proactively creating artificial load signatures that mislead potential attackers. We evaluate our proposed algorithm against a non-intrusive load monitoring (NILM) adversary. The results demonstrate that our approach not only effectively conceals real energy usage patterns but also outperforms state-of-the-art methods in enhancing user privacy while maintaining cost efficiency.
- Abstract(参考訳): スマートメーターはエネルギー管理と効率を高める上で重要な役割を担いますが、エネルギー消費パターンを通じて詳細なユーザー行動を明らかにすることで、プライバシー上の懸念を生じさせます。
近年の研究では、コストのバランスを保ちながらユーザのプライバシを保護するため、バッテリ支援型ロードシェイピング技術の開発に焦点が当てられている。
本稿では,攻撃者を誤解させるような人工的な負荷シグネチャを積極的に生成することにより,ユーザのプライバシを保護するために設計された,深層強化学習に基づくロードシェイピングアルゴリズム(PLS-DQN)を提案する。
我々は,提案アルゴリズムを非侵入負荷監視(NILM)の敵に対して評価する。
その結果,本手法は実際のエネルギー利用パターンを効果的に隠蔽するだけでなく,コスト効率を維持しつつユーザのプライバシを向上させる上で,最先端の手法よりも優れていることがわかった。
関連論文リスト
- Anomaly-based Framework for Detecting Power Overloading Cyberattacks in Smart Grid AMI [5.5672938329986845]
本稿では回帰決定木に基づく2段階異常検出フレームワークを提案する。
導入された検出手法は、エネルギー消費の規則性と予測可能性を利用して参照消費パターンを構築する。
アイルランドの500人の顧客を対象とした,実世界の公用エネルギー消費データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2024-07-03T16:52:23Z) - Local Differential Privacy for Smart Meter Data Sharing [13.362785829428457]
ローカルディファレンシャルプライバシ(LDP)メソッドは、プライバシの懸念に対処する上で、高い効率で強力なプライバシ保証を提供する。
スライドウィンドウを用いたランダム化応答手法を用いた新しいLPP手法(LDP-SmartEnergy)を提案する。
評価の結果, LDP-SmartEnergy はベースライン法と比較して効率よく動作することがわかった。
論文 参考訳(メタデータ) (2023-11-08T09:22:23Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
我々は、人間の行動認識パイプラインに沿って、堅牢な視覚的プライバシー保護を提供するための最適化フレームワークを提案する。
我々のフレームワークは、カメラレンズをパラメータ化して、ビデオの品質を劣化させ、プライバシー特性を抑え、敵の攻撃を防ぎます。
論文 参考訳(メタデータ) (2022-06-08T13:43:29Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Privacy Protection of Grid Users Data with Blockchain and Adversarial
Machine Learning [0.8029049649310213]
世界中のユーティリティーは、今後数年間に3億以上のスマートメーターを設置するために合計で約300億ドルを投資すると報告されている。
国全体の展開により、13億近いスマートメーターが配置されます。
きめ細かいエネルギー使用量データ収集に関連するこれらのすべての特典は、ユーザーのプライバシーを脅かす。
本研究は、スマートメーターから収集した消費者のエネルギー利用データに対するプライバシー侵害について論じる。
論文 参考訳(メタデータ) (2021-01-15T21:54:55Z) - Privacy-Preserving Synthetic Smart Meters Data [24.29870358870313]
本稿では,原典を忠実に模倣する合成電力消費サンプルを生成する方法を提案する。
本手法はGAN(Generative Adversarial Networks)に基づく。
ニューラルネットワークのトレーニングセットのメンバーに提供されるプライバシー保証について検討する。
論文 参考訳(メタデータ) (2020-12-06T16:11:16Z) - Avoiding Occupancy Detection from Smart Meter using Adversarial Machine
Learning [0.7106986689736826]
本稿では,アタックとしてAdversarial Machine Learning Occupancy Detection Avoidance (AMLODA) フレームワークを導入する。
基本的に、提案するプライバシー保護フレームワークは、リアルタイムまたはほぼリアルタイムの電力使用情報を隠すように設計されている。
以上の結果から,提案手法はユーザのプライバシを強く支持することを示す。
論文 参考訳(メタデータ) (2020-10-23T20:02:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。