Kestrel: 3D Multimodal LLM for Part-Aware Grounded Description
- URL: http://arxiv.org/abs/2405.18937v2
- Date: Mon, 04 Aug 2025 13:54:40 GMT
- Title: Kestrel: 3D Multimodal LLM for Part-Aware Grounded Description
- Authors: Mahmoud Ahmed, Junjie Fei, Jian Ding, Eslam Mohamed Bakr, Mohamed Elhoseiny,
- Abstract summary: Part-Aware Point Grounded Description (PaPGD) is a challenging task aimed at advancing 3D multimodal learning for fine-grained, part-aware segmentation grounding.<n>We present the 3DCoMPaT Grounded Instructions (3DCoMPaT-GrIn) dataset, a comprehensive resource that pairs rich point cloud descriptions with corresponding part-level segmentation masks.<n>We propose Kestrel, a part-aware 3D multimodal large language model that integrates an advanced language model for nuanced language comprehension with multi-level point feature propagation and query refinement mechanism.
- Score: 33.55332803244455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Part-Aware Point Grounded Description (PaPGD), a challenging task aimed at advancing 3D multimodal learning for fine-grained, part-aware segmentation grounding and detailed explanation of 3D objects. Existing 3D datasets largely focus on either vision-only part segmentation or vision-language scene segmentation, lacking the fine-grained multimodal segmentation needed for robotic navigation and interaction in real-world environments. To address this gap, we present the 3DCoMPaT Grounded Instructions (3DCoMPaT-GrIn) Dataset, a comprehensive resource that pairs rich point cloud descriptions with corresponding part-level segmentation masks. This dataset encompasses extensive samples designed for both PaPGD and fine-grained single-part grounding tasks. To tackle the inherent challenges of grounding objects and generating grounded descriptions at the part level, we propose Kestrel, a part-aware 3D multimodal large language model that integrates an advanced language model for nuanced language comprehension with multi-level point feature propagation and query refinement mechanism to enhance spatial reasoning at the part level. The extensive experiments demonstrate that Kestrel effectively bridges the gap between part-aware language understanding and 3D segmentation grounding, paving the way for more robust and interpretable 3D object comprehension that meets the demands of real-world robotic applications. Project page at https://feielysia.github.io/Kestrel.github.io/
Related papers
- Segment Any 3D-Part in a Scene from a Sentence [50.46950922754459]
This paper aims to achieve the segmentation of any 3D part in a scene based on natural language descriptions.<n>We introduce the 3D-PU dataset, the first large-scale 3D dataset with dense part annotations.<n>On the methodological side, we propose OpenPart3D, a 3D-input-only framework to tackle the challenges of part-level segmentation.
arXiv Detail & Related papers (2025-06-24T05:51:22Z) - Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving [45.82124136705798]
DriveMonkey is a framework that seamlessly integrates Large Visual-Language Models with a spatial processor.<n>Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task.
arXiv Detail & Related papers (2025-05-13T16:36:51Z) - IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.
We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.
We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.
Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.
We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios.
Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts.
To address these limitations, we propose COPS, a COmprehensive model for Parts that blends semantics extracted from visual concepts and 3D geometry to effectively identify object parts.
arXiv Detail & Related papers (2024-12-05T15:27:58Z) - Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description [56.69740649781989]
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI.<n>We introduce Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes.<n>We also present USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects.
arXiv Detail & Related papers (2024-12-02T11:33:55Z) - Functionality understanding and segmentation in 3D scenes [6.1744362771344]
We introduce Fun3DU, the first approach designed for functionality understanding in 3D scenes.
Fun3DU uses a language model to parse the task description through Chain-of-Thought reasoning.
We evaluate Fun3DU on SceneFun3D, the most recent and only dataset to benchmark this task.
arXiv Detail & Related papers (2024-11-25T11:57:48Z) - PAVLM: Advancing Point Cloud based Affordance Understanding Via Vision-Language Model [4.079327215055764]
Affordance understanding, the task of identifying actionable regions on 3D objects, plays a vital role in allowing robotic systems to engage with and operate within the physical world.<n>Visual Language Models (VLMs) have excelled in high-level reasoning but fall short in grasping the nuanced physical properties required for effective human-robot interaction.<n>We introduce PAVLM, an innovative framework that utilizes the extensive multimodal knowledge embedded in pre-trained language models to enhance 3D affordance understanding of point cloud.
arXiv Detail & Related papers (2024-10-15T12:53:42Z) - 3D-GRES: Generalized 3D Referring Expression Segmentation [77.10044505645064]
3D Referring Expression (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description.
Generalized 3D Referring Expression (3D-GRES) extends the capability to segment any number of instances based on natural language instructions.
arXiv Detail & Related papers (2024-07-30T08:59:05Z) - RefMask3D: Language-Guided Transformer for 3D Referring Segmentation [32.11635464720755]
RefMask3D aims to explore the comprehensive multi-modal feature interaction and understanding.
RefMask3D outperforms previous state-of-the-art method by a large margin of 3.16% mIoU on the challenging ScanRefer dataset.
arXiv Detail & Related papers (2024-07-25T17:58:03Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models [20.277479473218513]
We introduce a new task: Zero-Shot 3D Reasoning for parts searching and localization for objects.
We design a simple baseline method, Reasoning3D, with the capability to understand and execute complex commands.
We show that Reasoning3D can effectively localize and highlight parts of 3D objects based on implicit textual queries.
arXiv Detail & Related papers (2024-05-29T17:56:07Z) - Reason3D: Searching and Reasoning 3D Segmentation via Large Language Model [108.35777542298224]
This paper introduces Reason3D, a novel large language model for comprehensive 3D understanding.
We propose a hierarchical mask decoder to locate small objects within expansive scenes.
Experiments validate that Reason3D achieves remarkable results on large-scale ScanNet and Matterport3D datasets.
arXiv Detail & Related papers (2024-05-27T17:59:41Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model [19.333506797686695]
We introduce a novel segmentation task known as reasoning part segmentation for 3D objects.
We output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object.
We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations.
arXiv Detail & Related papers (2024-04-04T23:38:45Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - PointLLM: Empowering Large Language Models to Understand Point Clouds [63.39876878899682]
PointLLM understands colored object point clouds with human instructions.
It generates contextually appropriate responses, illustrating its grasp of point clouds and common sense.
arXiv Detail & Related papers (2023-08-31T17:59:46Z) - Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding [42.04502185508723]
We propose a new large Language-guided SHape grAsPing datasEt to promote 3D part-level affordance and grasping ability learning.<n>From the perspective of robotic cognition, we design a two-stage fine-grained robotic grasping framework (named LangPartGPD)<n>Our method combines the advantages of human-robot collaboration and large language models (LLMs)<n>Results show our method achieves competitive performance in 3D geometry fine-grained grounding, object affordance inference, and 3D part-aware grasping tasks.
arXiv Detail & Related papers (2023-01-27T07:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.