Synthetic Potential Outcomes and Causal Mixture Identifiability
- URL: http://arxiv.org/abs/2405.19225v4
- Date: Fri, 13 Dec 2024 06:58:47 GMT
- Title: Synthetic Potential Outcomes and Causal Mixture Identifiability
- Authors: Bijan Mazaheri, Chandler Squires, Caroline Uhler,
- Abstract summary: Heterogeneity can be resolved at multiple levels by grouping populations according to different notions of similarity.<n>This paper proposes grouping with respect to the causal response of an intervention or perturbation on the system.
- Score: 9.649642656207869
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Heterogeneous data from multiple populations, sub-groups, or sources is often represented as a ``mixture model'' with a single latent class influencing all of the observed covariates. Heterogeneity can be resolved at multiple levels by grouping populations according to different notions of similarity. This paper proposes grouping with respect to the causal response of an intervention or perturbation on the system. This definition is distinct from previous notions, such as similar covariate values (e.g. clustering) or similar correlations between covariates (e.g. Gaussian mixture models). To solve the problem, we ``synthetically sample'' from a counterfactual distribution using higher-order multi-linear moments of the observable data. To understand how these ``causal mixtures'' fit in with more classical notions, we develop a hierarchy of mixture identifiability.
Related papers
- Learning and Generalization with Mixture Data [20.282908756947936]
We study generalization performance and statistical rates when data is sampled from a mixture distribution.
In particular, we study the generalization performance under the classical PAC framework.
arXiv Detail & Related papers (2025-04-29T11:21:15Z) - Benign Overfitting and the Geometry of the Ridge Regression Solution in Binary Classification [75.01389991485098]
We show that ridge regression has qualitatively different behavior depending on the scale of the cluster mean vector.
In regimes where the scale is very large, the conditions that allow for benign overfitting turn out to be the same as those for the regression task.
arXiv Detail & Related papers (2025-03-11T01:45:42Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error [29.78435955758185]
We focus on causal discovery in the presence of measurement error in linear systems.
We demonstrate a surprising connection between this problem and causal discovery in the presence of unobserved parentless causes.
arXiv Detail & Related papers (2022-11-08T03:43:14Z) - C-Mixup: Improving Generalization in Regression [71.10418219781575]
Mixup algorithm improves generalization by linearly interpolating a pair of examples and their corresponding labels.
We propose C-Mixup, which adjusts the sampling probability based on the similarity of the labels.
C-Mixup achieves 6.56%, 4.76%, 5.82% improvements in in-distribution generalization, task generalization, and out-of-distribution robustness, respectively.
arXiv Detail & Related papers (2022-10-11T20:39:38Z) - Interventional Causal Representation Learning [75.18055152115586]
Causal representation learning seeks to extract high-level latent factors from low-level sensory data.
Can interventional data facilitate causal representation learning?
We show that interventional data often carries geometric signatures of the latent factors' support.
arXiv Detail & Related papers (2022-09-24T04:59:03Z) - Weakly Supervised Representation Learning with Sparse Perturbations [82.39171485023276]
We show that if one has weak supervision from observations generated by sparse perturbations of the latent variables, identification is achievable under unknown continuous latent distributions.
We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.
arXiv Detail & Related papers (2022-06-02T15:30:07Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Mixture Representation Learning with Coupled Autoencoders [1.589915930948668]
We propose an unsupervised variational framework using multiple interacting networks called cpl-mixVAE.
In this framework, the mixture representation of each network is regularized by imposing a consensus constraint on the discrete factor.
We use the proposed method to jointly uncover discrete and continuous factors of variability describing gene expression in a single-cell transcriptomic dataset.
arXiv Detail & Related papers (2020-07-20T04:12:04Z) - Mixture of Conditional Gaussian Graphical Models for unlabelled
heterogeneous populations in the presence of co-factors [0.0]
Conditional correlation networks, within Gaussian Graphical Models (GGM), are widely used to describe the direct interactions between the components of a random vector.
In this article, we propose a Mixture of Conditional GGM (CGGM) that subtracts the heterogeneous effects of the co-features to regroup the data points into sub-population corresponding clusters.
arXiv Detail & Related papers (2020-06-19T11:57:30Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
This work proposes an algorithm that consistently estimates any identifiable mixture model from grouped observations.
A practical implementation is provided for paired observations, and the approach is shown to outperform existing methods.
arXiv Detail & Related papers (2020-06-12T20:44:22Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z) - Pursuing Sources of Heterogeneity in Modeling Clustered Population [16.936362485508774]
We propose a regularized finite mixture effects regression to achieve heterogeneous pursuit and feature selection simultaneously.
A constrained sparse estimation of these effects leads to the identification of both the variables with common effects and those with heterogeneous effects.
Three applications are presented, namely, an imaging genetics study for linking genetic factors and brain traits in Alzheimer's disease, a public health study for exploring the association between suicide risk among adolescents and their school district characteristics, and a sport analytics study for understanding how the salary levels of baseball players are associated with their performance and contractual status.
arXiv Detail & Related papers (2020-03-10T14:59:35Z) - Causal Structure Discovery from Distributions Arising from Mixtures of
DAGs [12.12755951035594]
We consider distributions arising from a mixture of causal models, where each model is represented by a directed acyclic graph (DAG)
We show that such algorithms recover a "union" of the component DAGs and can identify variables whose conditional distribution across the component DAGs vary.
As an immediate application, we demonstrate how retrieval of this causal information can be used to cluster samples according to each mixture component.
arXiv Detail & Related papers (2020-01-31T16:33:26Z) - Blocked Clusterwise Regression [0.0]
We generalize previous approaches to discrete unobserved heterogeneity by allowing each unit to have multiple latent variables.
We contribute to the theory of clustering with an over-specified number of clusters and derive new convergence rates for this setting.
arXiv Detail & Related papers (2020-01-29T23:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.